Theorem

If chords of a circle are equal in length, then they are equidistant from the centre.

Given :

$$
\mathbf{A B}=\mathbf{C D}, \overline{\mathbf{M X}} \perp \overline{\mathbf{A B}}, \overline{\mathbf{M Y}} \perp \overline{\mathbf{C D}}
$$

R.T.P. MX = MY

Constraction : draw $\overline{\mathrm{MA}}$ and $\overline{\mathrm{MC}}$
Proof: In $\Delta \Delta$ AMX, CMY

1) $\mathrm{AX}=\mathrm{CY} \quad\left(\mathrm{AX}=\frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{CD}=\mathrm{CY}\right)$
2) $\mathbf{M A}=\mathrm{MC}=\mathrm{r}$
3) $\mathrm{m}(\angle \mathrm{AXM})=\mathrm{m}(\angle \mathrm{CYM})=90^{\circ}$
$\therefore \triangle \mathrm{AMX} \equiv \triangle$ CMY $\quad \therefore$ MX $=\mathbf{M Y}$

Theorem

In the same circle, the measures of all inscribed angles subtended by the same arc are equal.

Given :

$\angle \mathrm{C}, \angle \mathrm{D}$ and $\angle \mathrm{E}$ are inscribed angles subtended by AB R.T.P.

$$
\mathbf{m}(\angle \mathbf{C})=\mathbf{m}(\angle \mathbf{D})=\mathbf{m}(\angle \mathbf{E})
$$

$$
\begin{aligned}
\text { Proof : } & \because \mathrm{m}(\angle \mathrm{C})=\frac{1}{2} \mathrm{~m}(\mathrm{AB}) \\
& , \mathrm{m}(\angle \mathrm{D})=\frac{1}{2} \mathrm{~m}(\mathrm{AB}) \\
& , \mathrm{m}(\angle \mathrm{E})=\frac{1}{2} \mathrm{~m}(\mathrm{AB}) \\
& \therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{E})
\end{aligned}
$$

Theorem

In a cyclic quadrilateral , each two opposite angles are supplementary
Given : ABCD is a cyclic quadrilateral R.T.P. 1) $\mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{C})=180^{\circ}$

$$
\text { 2) } \mathbf{m}(\angle \mathrm{B})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}
$$

Proof: $m(\angle A)=\frac{1}{2} m(B C D)$

B

$$
\mathrm{m}(\angle \mathrm{C})=\frac{1}{2} \mathrm{~m}(\mathrm{BAD})
$$

$$
\therefore \mathrm{m}(\angle \mathrm{~A})+\mathrm{m}(\angle \mathrm{C})=\frac{1}{2}[\mathrm{~m}(\mathrm{BCD})+\mathrm{m}(\mathrm{BAD})]
$$

$=\frac{1}{2}$ the measure of the circle

$$
=\frac{1}{2} \times 360^{\circ}=180^{\circ}
$$

Similarly : $m(\angle A)+m(\angle C)=180^{\circ}$

Theorem

The two tangent - segments drawn to a circle from a point outside it are equal in length.

Given: $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent - segments R.T.P. $\mathrm{AB}=\mathrm{AC}$

Construction: draw $\overline{\mathrm{MB}}$

$$
, \overline{\mathrm{MC}}, \overline{\mathrm{MA}}
$$

Proof: In $\Delta \Delta \mathrm{ABM}, \mathrm{ACM}$

1) $\mathrm{MB}=\mathrm{MC}=\mathrm{r}$

2) $\overline{\mathrm{AM}}$ is a common side
3) $\mathrm{m}(\angle \mathrm{ABM})=\mathrm{m}(\angle \mathrm{ACM})=90^{\circ}$ (where $\overleftrightarrow{A B}$ and $\overleftrightarrow{A C}$ are two tangents)
$\therefore \Delta \mathrm{ABM} \equiv \Delta \mathrm{ACM} \quad \therefore \mathrm{AB}=\mathrm{AC}$

Theorem

The measure of the angle of tangency is equal to the measure of the inscribed angle subtended by the

same arc

Given : $\angle B A C$ is an angle of tangency and $\angle D$ is an inscribed angle. R.T.P. $\mathbf{m}(\angle \mathrm{BAC})=\mathbf{m}(\angle \mathrm{D})$

Proof : $\because \angle \mathbf{B A C}$ is an angle of tangency.

$$
\therefore \mathrm{m}(\angle \mathrm{BAC})=\frac{1}{2} \mathrm{~m}(\mathrm{AB}) \ldots(1)
$$

$\because \angle \mathrm{D}$ is an inscribed angle
$\therefore \mathrm{m}(\angle \mathrm{D})=\frac{\mathbf{1}}{\mathbf{2}} \mathrm{m}(\widehat{\mathrm{AB}})^{\prime}$
From (1) and (2), we deduce that

$$
\mathbf{m}(\angle \mathbf{B A C})=\mathbf{m}(\angle \mathbf{D})
$$

The circle: is the set of points of a plane, which are at a constant Distance from a fixed point

Chord

The symmetry of the circle:

* Any straight line passing

Through the centre of a circle
Is an axis of symmetry of it.

* The circle has an infinite number

Of axes of symmetry.
The circumference of a circle $=2 \pi r$
The area of a circle $=\pi r^{2}$
Corollary (1)
The straight line passing through the centre of a circle and the midpoint of any chord of it is perpendicular to this chord.
if $\overline{A B}$ is a chord of a circle M and MC is drawn where C is is the midpoint of $\overline{\mathrm{AB}}$, then: $\overleftrightarrow{\mathrm{MC}} \perp \overline{\mathrm{AB}}$

Corollary (2)

The straight line passing through the centre of a circle and perpendicular to any chord of it bisects this chord. If $\overline{A B}$ is a chord of a circle M

And MC is drawn where
$\overleftrightarrow{\mathrm{MC}} \perp \overline{\mathrm{AB}}$ And $\overleftrightarrow{\mathrm{MC}} \cap \overline{\mathrm{AB}}=\{\mathbf{C}\}$, Then $\overleftrightarrow{\text { MC }}$ bisects $\overline{\mathrm{AB}}$ at C

Corollary (3)

The perpendicular bisector of any chord of a circle passes through the centre of the circle.
If $\overline{\mathrm{AB}}$ is a chord of a circle M
The straight line $L \perp \overline{\mathrm{AB}}$ and L
Bisects $\overline{\mathbf{A B}}$ at \mathbf{C}, then:
$M \in$ The straight line L

Then the axis of symmetry of any chord

Of a circle passes through its centre, so this axis is an axis of symmetry of the circle.
Position of a point with respect to a circle If M is a circle with radius length r and A is a point in its plane, then

1) A is outside the circle 2) A is inside the circle If MA >r

2) $\mathbf{A} \in$ the circle $\mathbf{M A}=\mathbf{r}$

If MA $<r$

A
Position of a straight line With respect to a circle

1) $M A>r$ then L is outside the circle
2) $M A=r$ then L is a tangent
3) $M A<r$ then L is a secant

Position of a circle with respect to another circle

1) $\mathrm{MN}>\mathrm{r}_{1}+\mathrm{r}_{2}$ the two circles are distant
2) $\mathbf{M N}=r_{1}+r_{2}$ the two circles are touching externally
3) $r_{1}-r_{2}<\mathbf{M N}<r_{1}+r_{2}$ the two circles are intersecting
4) $\mathbf{M N}=\mathbf{r}_{1}-r_{2}$ the two circles are touching internally
5) $\mathrm{MN}<\mathbf{r}_{1}-\mathbf{r}_{2}$ the two circles are one inside the other
6) $\mathrm{MN}=$ zero the two circles are concentric

Theorem

If the chords are equal in length, then they are equidistant from the centre.

Corollary

The circle that passes through the vertices of a triangle is called the circumcircle of this triangle.
And the centre

1) Acute inside
2) Obtuse outside
3) Right the midpoint of the hypotenuse

Number of circle passes through the
figures

1) Point infinite 2) Two points infinite
2) Three collinear points zero
3) Three non collinear points one
4) Parallelogram zero
5) Rhombus zero
6) Rectangle one
7) Square one
8) Isosceles trapezium one

* The centre of the circumscribed of the vertices of a triangle is the intersection of the axes of symmetry of the sides of a triangle
* The centre of the inscribed circle of a triangle is the intersection of the bisectors of the interior angles of a triangle
* There are an infinite number of circles passing through a given point.
* There are an infinite number of circles passing through a given two points.
* There is no circle passing through three collinear points
* There is one circle passing through three non collinear points.
* There is one circle passing through

1) Triangle
2) Isosceles trapezium
3) square
4) Rectangle

* $m(\angle A)=\frac{1}{2}(m(D C)-m(B E))$
* $\mathrm{AE} \times \mathrm{AD}=\mathrm{AB} \times \mathrm{AC}$

$* m(\angle A E C)=\frac{1}{2}(m(D B)+m(A C))$
* $\mathbf{A E} \times \mathbf{E B}=\mathbf{C E} \times \mathbf{E D}$

The quadrilateral is a cyclic if one of the following conditions is verified:

1) If there is a point in the plane of the figure such that it is equidistant from its vertices.
2) If there are two equal angles in measure and drawn on one of its sides as a base and on one side of this side.
3) If there are two opposite supplementary angles " their sum = 180 "
4) If there is an exterior angle at any of its vertices equal in measure to the measure of the interior angle at the opposite vertex.

$M A=M B=M C=M D$

5) $(\mathrm{BC})^{2}=(\mathrm{AC})^{2}+(\mathrm{AB})^{2}$
6) $(\mathrm{AC})^{2}=(\mathrm{BC})^{2}-(\mathrm{AB})^{2}$
7) $(A B)^{2}=(B C)^{2}-(A C)^{2}$
8) $(A B)^{2}=B D \times B C$
9) $(\mathrm{AC})^{2}=\mathrm{CD} \times \mathrm{CB}$
10) $(\mathrm{AD})^{2}=\mathrm{DC} \times \mathrm{DB}$
11) $(\mathrm{AC})^{2}=(\mathrm{AD})^{2}+(\mathrm{DC})^{2}$

12) $(\mathrm{AB})^{2}=(\mathrm{AD})^{2}+(\mathrm{DB})^{2}$
13) $(\mathrm{AD})^{2}=(\mathrm{AC})^{2}-(\mathrm{DC})^{2}$
14) $(A D)^{2}=(A B)^{2}-(B D)^{2}$
15) $\mathrm{AD}=\frac{\mathbf{A C} \times \mathrm{AB}}{\mathbf{B C}}$
16) $\mathbf{B C}=\frac{\mathbf{A C} \times \mathrm{AB}}{\mathrm{AD}}$
17) $\mathrm{AC}=\frac{\mathrm{AD} \times \mathrm{BC}}{\mathrm{AB}}$
18) $\mathrm{AB}=\frac{\mathrm{AD} \times \mathrm{BC}}{\mathrm{AC}}$

Number of axes

The name of the figure	Its perimeter	Its area
Triangle	The sum of the lengths of its sides	$\frac{1}{2} \times b \times h$ $b:$ base length $h:$ the length of the height
Parallelogram	$2\left(b_{1}+b_{2}\right)$	$b_{1} \times h_{1}=b_{2} \times h_{2}$ b_{1}, b_{2} are two adjacent sides h_{1}, h_{2} are the corresponding heights
Rectangle	$(\mathbf{L}+\mathbf{W}) \times 2$	$\mathbf{L} \times \mathbf{W}$ L : the length W : the width
Square	4 s	$\begin{gathered} \mathrm{s}^{2}=\frac{1}{2} \mathrm{~d}^{2} \\ \mathrm{~s}: \text { the side length } \\ \mathrm{d}: \text { the length of the diagonal } \end{gathered}$
Rhombus	4 s	$\begin{gathered} \mathrm{s} \times \mathrm{h} \\ \text { or } \frac{1}{2} d_{1} d_{2} \\ \mathrm{~s}: \text { side length } \\ \mathrm{d}_{1}, \mathrm{~d}_{2}: \text { the length of the } \\ \text { two diagonals } \\ \hline \end{gathered}$
Trapezium	The sum of the lengths of its sides	$\frac{1}{2}\left(b_{1}+b_{2}\right) \times h$ or $b \times h$ b_{1}, b_{2} : the length of the two bases and b : the length of the middle base, h : the height

$$
\begin{array}{ll}
\mathrm{C}=2 \pi \mathrm{r}=\mathrm{D} \times \pi & \mathrm{A}=\pi \mathbf{r}^{2} \\
\frac{\mathrm{~L}}{2 \pi \mathrm{r}}=\frac{\mathbf{m}}{\mathbf{3 6 0 ^ { \circ }}} &
\end{array}
$$

$$
\text { If } \mathrm{AB}=\mathrm{CD} \text { then } \mathrm{m}(\mathrm{AB})=\mathrm{m}(\mathrm{CD})
$$ the length of $\mathrm{AB}=$ the length of CD

 If $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$ then $\mathrm{m}(\mathbf{A C})=\mathrm{m}(\mathbf{B D})_{\mathrm{D}}$

$$
\text { If } \mathrm{L} / / \overline{\mathrm{CD}} \text { then } \mathrm{m}(\mathrm{AC})=\underset{\underset{L}{ }(\mathrm{CB})}{(\mathrm{CB}}
$$

[1] Complete:

1) If the point $A \in$ the circle M whose diameter
length $=8 \mathrm{~cm}$, thenMA $=\ldots \mathrm{cm}$
2) If M and N are two circles touched internally
the radius of one of them $=3 \mathrm{~cm}, \mathrm{MN}=8 \mathrm{~cm}$
thenthe radius of the other circle $=$......
3) The circle M with radius 5 cm touch externally
the circle N , if $\mathbf{M N}=7 \mathrm{~cm}$ then the
circumference of the circle $\mathrm{N}=$.......cm
4) M and N are two intersecting circles . the two radii
length are $\mathbf{3 c m}$ and 4 cm respectively then :
MN \in
5) If the area of the circle $M=16 \pi \mathrm{~cm}^{2}$, A is a point on its plane where MA $=8 \mathrm{~cm}$. then A is circle M
6) Circle M with radius length of 6 cm , if the straight line L is outside the circle then the distance of the centre of the circle from the straight line $L \in$
7) A circle with diameter length ($2 x+5$) cm , the straight line L is a distant from its centre by ($x+2$) cm then the straight line L is
8) The number of circles that passes through two given points is
9) Any three points do not belong to one straight line passes through them
10) The circle passing through the vertices of a triangle is called a
11) The center of the circle passing through the vertices of a triangle is the point intersecting its
12) If the right angled triangle $A B C$ at B, then the centre
of the circle passing through its vertices is
13) The number of circles that can pass through any three vertices of a parallelogram is
14) The chord of the circle is the drawn line segment
between
15) The straight line passing vertically on the center of the circle on any chord in it
> 16) The line of two centres of two circles touching internally passes
16) The centre of the circumscribed circle about the
triangle is the intersection of
17) The chords of equal length in circle
18) A tangent to a circle of diameter length 6 cm is at a distance of cm from its centre.
19) A circle can be drawn passing the vertices of a
(Rhombus, rectangle, trapezium , parallelogram)
20) $\overline{\mathrm{AB}}$ is a diameter in circle $\mathrm{M}, \overleftrightarrow{\mathrm{AC}}$ and $\overleftrightarrow{\mathrm{BD}}$ are two tangents to the circle, then $\overleftrightarrow{\mathbf{A C}} \ldots{ }_{\mathbf{B D}}$
21) A circle with a circumference of $6 \pi \mathrm{~cm}$, and the
straight line L is a distant from its centre by $\mathbf{3} \mathbf{~ c m}$
, then the straight line L is
22) M and N are two intersecting circles, both their
radii length are $\mathbf{3 c m}$ and 5 cm , then $\mathrm{MN} \in$
23) Any three points that do not belong to one straight line include
24) The axis of symmetry of the two circles M and N that are intersecting at A and B is
25) If $\mathrm{AB}=7 \mathrm{~cm}$, then the area of the smallest circle passing through the two points A and $B=\ldots \ldots . \mathrm{cm}^{2}$
26) A chord with 8 cm length. The length of its radius is 5 cm , then it is distant from its centre by Cm. 28) If M circle with radius length 7 cm and MA $\perp \mathbf{L}$ where $A \in L$, complete the following:
a) If MA $=\mathbf{4} \sqrt{\mathbf{3}} \mathrm{cm}$, then the straight line L is
b) If MA $=3 \sqrt{7} \mathrm{~cm}$, then the straight line L is
c) If $\mathbf{2} \mathrm{MA}-5=\mathbf{9} \mathbf{~ c m}$, then the straight line L is
d) If the straight line L intersects circle M and

MA $=3 x-5$ then $x \in$
e) If the straight line L is tangent to the circle M and

MA $=x^{2}-2$ then $x \in$
29) If M is a circle with radius length $=4 \mathrm{~cm}$ and A is a point in its plane, complete:
a) If $\mathrm{MA}=\mathbf{4 c m}$, then A is circle M ,
because
b) If $\mathbf{M A}=2 \sqrt{3}$ then \mathbf{A} is circle M because
c) If $\mathrm{MA}=3 \sqrt{2} \mathrm{~cm}$, then A is circle M
because
d) If MA $=$ zero , then A is circle M and represented by

[2]

Two concentric circles \mathbf{M}, AB is a chord in the large circle and intersects the smaller circle at C and $D, \overline{A E}$ is a chord in the larger circle and intersects the smaller circle at Z and L. if $m(\angle A B E)=m(\angle A E B)$ thenprove that:
$\mathbf{C D}=\mathbf{Z L}$

[3] In the opposite figure:

M and N are two congruent circles, $\overleftrightarrow{\mathbf{A B}} / / \overleftrightarrow{\mathbf{M N}}$ was drawn and intersecte circle M at A and B and intersectcircle \mathbf{N} at \mathbf{C} and D Prove that: AC=BD

Construction:

Draw $\overline{\mathbf{M E}} \perp \overleftrightarrow{\mathrm{AD}}, \overline{\mathrm{MF}} \perp \overleftrightarrow{\mathrm{AD}}$

[4] In the following figure:

The two circles M and N intersectat A and B. is drawn $\overrightarrow{\mathbf{M X}} \perp \overline{\mathbf{A C}}$ intersects $\overline{A C}$ at Xand intersectcircle \mathbf{M} in $\mathbf{Y}, \overline{\mathbf{M N}}$ is drawn $\overline{\mathrm{AB}}$ to intersect AB at D and circle M at E if $\mathrm{AC}=\mathrm{AB}$ Prove that: $\mathrm{XY}=\mathrm{DE}$

[5]

Two circles M and N touch internally at $A, \overline{A B}$ and $\overline{A C}$ are two chords equal in length in the large circle and intersect the smaller circle at D and E respectively. Prove that: AD = AE.

Construction:

Draw $\overline{\mathbf{M F}} \perp \overline{\mathbf{A B}}$
$\overline{\mathbf{M Y}} \perp \overline{\mathbf{A C}}$
$\overline{\mathbf{N X}} \perp \overline{\mathbf{A D}}$
$\overline{\mathbf{M Z}} \perp \overline{\mathbf{A E}}$

[6]

Two concentriccircles $M, \overline{\mathrm{AB}}$ is a chord in the larger circleand intersectssmallercircle at \mathbf{C} and $\mathrm{D} . \overline{\mathrm{EF}}$ is a chord in the larger circle and intersectsthe smaller circle at Z and L where $A B=E F$

Prove that:

1) $C D=Z L$
2) $\mathrm{AD}=\mathrm{ZF}$
[7]

ABC is a triangle in which $\mathrm{AB}=\mathrm{AC}$.circle M was drawn with diameter $\overline{\mathrm{BC}}$ intersecting $\overline{\mathrm{AB}}$ at D and $\overline{\mathrm{AC}}$ at E , $\overline{\mathbf{M X}} \perp \overline{\mathrm{BD}}, \overline{\mathrm{MY}} \perp \overline{\mathbf{C E}}$ prove that $: \mathrm{BD}=\mathbf{C E}$

[8]

Two concentric circles in
$M, \overline{A B}$ is a chord in the large circle and is a tangent to the smaller circle at \mathbf{C} and the chaded area equals
 16π. find the length of $\overline{\mathrm{AB}}$

[9]

Circle $\mathbf{M} \cap$ circle $\mathbf{N}=\{\mathbf{A}, \mathbf{B}\}, \overleftrightarrow{\mathbf{A B}} \cap \overleftrightarrow{\mathbf{M N}}=\{\mathbf{C}\}, \mathbf{D} \in \overleftrightarrow{\mathbf{M N}}$ $\overline{\mathbf{M X}} \perp \overline{\mathbf{A D}}, \overline{\mathbf{M Y}} \perp \overline{\mathbf{B D}}$, prove that $: \mathbf{M X}=\mathbf{M Y}$

[10]

Two concentric circles
M. their radii lengths
are 4 cm and 2 cm . draw
the triangle ABC where their verrtices are located on the large circle and

its sides are touching
the smaller circle at X
, Y and Z prove that: the triangle
ABC is equilateral triangle and find its area
[11]
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two equal chords in length in circle, \mathbf{X} and Y are the two midpoints of $\overline{A B}$ and $\overline{C D}$ where B and D are in one side from $\overleftrightarrow{\mathbf{X Y}}$

Prove that: $\mathbf{m}(\angle \mathbf{B X Y})=\mathbf{m}(\angle \mathrm{DYX})$

[12]

Two circles are touching internally at A. the shaded area equals $550 \mathrm{~cm}^{2}$
$\mathbf{M N}=7 \mathbf{c m}$. find
the sum of both

radii $\left(\pi=\frac{22}{7}\right)$

[13]

M and N are two circles with radii length of 10 cm and 6 cm respectively and are bothy touching internally at $\mathrm{A}, \overleftrightarrow{\mathrm{AB}}$ is a common tangent for both at A.if the are of the triangle
$B M N=24 \mathrm{~cm}^{2}$ find
the length of $\overline{\mathbf{A B}}$

[14* In the opposite figure: $\mathrm{AB}=\mathrm{AC}, \mathrm{X}$ is the mid-point Of $\overline{\mathrm{AB}}, \mathrm{Y}$ is the mid-point Of $\overline{\mathbf{A C}}$ prove that: $\mathbf{D X}=\mathbf{H Y}$

D

[15* In the opposite figure: M is a circle , $\overline{\mathrm{BC}}$ is a chord in it $\overrightarrow{\mathbf{B A}}$ is a tangent at B .
$\overrightarrow{\mathbf{A M}} \perp \overline{\mathbf{B C}}, \overrightarrow{\mathbf{M A}} \cap \overline{\mathbf{B C}}=\{\mathbf{D}\}$
$\mathrm{MB}=\mathbf{3 \mathrm { cm }}$ and $\mathrm{AB}=\mathbf{4 c m}$.
Find the length of $\overline{\mathbf{B C}}$
[16*] In the opposite figure:
Two circles M and N
Intersect at A and B $\mathbf{M N}=7 \mathrm{~cm}, \overline{\mathrm{MX}} \perp \overline{\mathrm{BC}}$ And $\mathrm{AB}=\mathrm{BC}$

1) If $M X=3 \mathbf{c m}$, find The length of $\overline{\mathbf{D N}}$.

2) If $\mathrm{AB}=\mathbf{8 \mathrm { cm }}$, prove that : $\mathrm{MB}=5 \mathrm{~cm}$.

[17*] In the opposite figure:

$A B$ is a diameter in the circle M
$\overleftrightarrow{\mathrm{AC}}$ is a tangent to it at the po int A if $\mathbf{m}(\angle A M D)=70^{\circ}$. Find $m(\angle C A D)$

[18*]Complete :

1) The perpendicular bisector of any chord of a circle passes through
2) The tangent of a circle is perpendicular to the radius drawn at the point
3) The line of centers of two intersecting circles is to the common chord and
4) M and N are two circles, the lengths of their radii are 3 cm. and 6 cm . respectively, $\mathrm{MN}=9 \mathrm{~cm}$., then the two circles are
5) The circle that passes through the vertices of a triangle is called of the triangle.
6) If the longest chord of a circle $=9 \mathrm{~cm}$., then its radius length =
7) M is a circle, the length of its diameter $=8 \mathrm{~cm}$. if L is a straight line outside the circle, then the distance between L and the center M belongs to
[19*] Complete:
8) M and N are two circleswith radius 5 cm and 4 cm Respectively. If MN = $\mathbf{7} \mathbf{~ c m}$, then the two circles are2) Two circles M and N are touching externally. If theRadius length of the circle M is 4 cm and $\mathrm{MN}=7 \mathrm{~cm}$,Then the circumference of the circle $\mathbf{N}=\ldots \ldots \ldots \ldots . . \mathrm{cm}$.
9) If A and B are two points in a plane, $A B=6 \mathrm{~cm}$, thenthe number of circles passing through the points A andB and radius of each is $5 \mathbf{~ c m}=$
10) In the same circle, chords which are equidistant From the centre are
11) The number of circles that passes through the Vertices of a triangle is
12) The number of axes of symmetry of rhombus is
13) The line of centres of two intersecting circles is Perpendicular to the common chord and
14) If the surface of circle M 亿 the surface of the circle $N=$ \{ a \}, then the two circles are
15) A circle of diameter 8 cm . if a straight line L touches This circle at a point, then it is cm distant from Its centre
16) It is impossible to draw a circle passing through the Vertices of a
17) The number of axes of symmetry of equilateral Triangle is
18) It is possible to draw passing through the two point A and B
19) If the radius length of a circle M is ${ }_{\mathbf{a}}^{-} \mathbf{c m}$, then its area= ... cm ${ }^{2}$14) If A, B and C are three collinear points. Then theNumber of circles passing through them is
20) The two tangents of a circle at the two end points of Its diameter are
21) M and N are two circles intersecting at A and B, then the axis of symmetry of $\overline{\mathrm{AB}}$ is
22) The area of a circle with centre $(2,-1)$ and passes
Through the point $(3,2)$ is $\ldots \ldots \ldots \ldots$. Square units.
23) The diameter length of a circle is 6 cm , if a point $B \in$ the circle M. if $B M=$ Cm
24) The radius length of a circle is 5 cm . if a straight line L
is at a distance 5 cm from its centre, then the straight
line is
25) M and N are two circles touching internally with radii r_{1} and r_{2} if $r_{1}=6 \mathrm{~cm}$ and $M N=12 \mathrm{~cm}$, then $\mathbf{r}_{2}=$ cm
26) M and N are two circles of radii 7 cm and 5 cm . if MN $=\mathbf{2 c m}$, then the two circles are
27) The number of circles that passes through two given points is
28) Number of circles that passes through non collinear three points is
29) If a point A lies outside a circle M, then the length ofMAthe radius of the circle M.
30) The radius of the smallest circle passing through two points of distance 6 cm is
31) If the radius length of the circle $M=5 \mathrm{~cm}$. and A is apoint in the plane where $M A=4 \mathrm{~cm}$., then the pointA lies ... the circle.
32) If $\overline{\mathrm{AB}}$ is a diameter of the circle $M, \overleftrightarrow{X A}$ and $\overleftrightarrow{Y B}$ are drawn to be tangents to the circle , then $\overleftrightarrow{X A} \ldots \overleftrightarrow{Y B}$ 28) A circle of diameter length 10 cm ., then the straight line that touches it is at a distance cm. from its centre.
33) The number of symmetry axes of the rhombus
34) If M and N are two touching circles internally and the Lengths of the two radii of them are r_{1} and r_{2} if $\mathrm{MN}=12 \mathrm{~cm} ., \mathrm{r}_{1}=\mathbf{6} \mathrm{cm}$. then $\mathrm{r}_{2}=\ldots \ldots \ldots \ldots \ldots \ldots \mathrm{cm}$.

[20]

Mand Nare two intersecting circles at A and B. draw $\overleftrightarrow{\mathbf{B D}} / / \overleftrightarrow{\mathbf{M N}}$ intersecting the two circles at D
 and E respectively.
prove that : $\mathrm{De}=\mathbf{2} \mathbf{M N}$

[21]

M and N are two distant and congruent circles. E is the midpoint of $\overline{\mathbf{M N}}$. draw $\overleftrightarrow{\mathbf{A E}}$ intersecting circle M at A and B intersectscircle N at C and D
Prove that : 1) $\mathrm{AB}=\mathrm{CD}$
2) E is the midpoint of $\overline{\mathrm{AD}}$

[22]

$\overrightarrow{A B}$ is a chord in a circle
$\mathbf{M}, \mathbf{B C}$ is a diameter on it , D is the midpoint of $\overline{A B}$

1) Prove that $\overline{\mathrm{MD}} / / \overline{\mathrm{AC}}$
2) Find m ($\angle A$)
[23]
$\overline{\mathrm{AB}}$ is a diameter in a circle $\mathrm{M}, \overline{\mathrm{AC}}$ is a chord on it , $\mathbf{m}(\angle \mathrm{BAC})=30^{\circ}$, draw $\overline{\mathrm{BC}}, \overline{\mathrm{MD}} \perp \overline{\mathrm{AC}}$ to cut it at D Prove that: 1) $\overline{\mathrm{MD}} / / \overline{\mathrm{BC}}$

3) The length of $\overline{\mathbf{B C}}$ equals the length of the radius of the circle

[24]

$\overline{A B}$ is a diameter in a circle $M, \overline{C D}$ is a chord on it, $\overline{\mathbf{C D}} / / \overline{\mathbf{A B}}, \overline{\mathbf{C X}} \perp \overline{\mathbf{A B}}, \overline{\mathbf{D Y}} \perp \overline{\mathbf{A B}}$ Prove that: $\mathbf{A X}=\mathbf{Y B}$

[25] Complete:

1) The area of a circle $=9 \pi \mathrm{~cm}^{2}$, the distance between the centre and the straight line $L=3 \mathrm{~cm}$ then L is
2) If the distance between the points $A(0, y)$, B $(4,0)$ equals 5 length unit , $y>0$ then $y=$
3) If the point $A \in$ the circle M whose diameter length $=8 \mathrm{~cm}$, then $\mathrm{MA}=$ cm
4) If M and N are two circles touched internally
the radius of one of them $=3 \mathrm{~cm}, \mathrm{MN}=8 \mathrm{~cm}$ then the radius of the other circle $=$
5) The circle M with radius 5 cm touch externally the circle N , if $\mathbf{M N}=7 \mathrm{~cm}$ then the circumference of the circle $\mathbf{N}=. ~ c m ~$
[26] Choose the correct answer:
6) If M and N are two intersected circles whose radii 5 cm and 2 cm , then $\mathrm{MN} \in$

$$
([3,7],] 3,7],] 3,7[,[3,7[)
$$

2) The origin point is the center of a circle with radius 9 cm , which point not belong to the circle?

$$
((0,9),(0,-9),(9,0),(9,9))
$$

[27]
\mathbf{M} and N are two intersecting
circles at A and B ,
$M A=12 \mathrm{~cm}$
, $\mathrm{NA}=\mathbf{9} \mathrm{cm}$ and
$\mathbf{M N}=15 \mathrm{~cm}$
Find the length of $\overline{\mathrm{AB}}$

[28]
$\overrightarrow{A B}$ is a tangent to the circle M at A and $M A=8 \mathrm{~cm}, \mathrm{~m}(\angle \mathrm{ABM})=30^{\circ}$
Find the length of each:
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$

M and N are two circles with radii length of 10 cm and 6 cm respectively and are bothy touching internally at $\mathrm{A}, \overleftrightarrow{\mathrm{AB}}$ is a common tangent for both at A.if the are of the triangle BMN $=\mathbf{2 4} \mathbf{c m}^{2}$ find

the length of $\overline{\mathrm{AB}}$

[30]

M and N are two intersecting circles at A and B, CD is a diameter in circle M and $\overline{C E}$ is a tangent to the circle M at C $\overline{\mathbf{M N}} \cap \overline{\mathbf{A B}}=\{\mathbf{F}\}$

Prove that:

$\mathbf{m}(\angle \mathbf{1})=\mathbf{m}(\angle \mathbf{2})$

[31]

In circle $\mathbf{M}, \overline{M X} \perp \overline{\mathbf{A B}}$
$\overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{A})=60^{\circ}$ $\mathrm{m}(\angle \mathrm{B})=7 \mathbf{7 0}^{\circ}$

Find : the measuresof the angles of the triangle MXY
[32]

M is a circle with radius
of length of 5 cm , A is a point
outside the circle. $\overrightarrow{\mathrm{AD}}$ is
a tangent to circle M at D
$\overrightarrow{\mathbf{A B}}$ intersects the circle at \mathbf{B} and C respectively where

$A B=4 \mathrm{~cm}$ and $A C=12 \mathrm{~cm}$.

1) Find the distance of the chord $\overline{\mathbf{B C}}$ from the center of the circle
2) Calculate the length of $\overline{\mathrm{AD}}$

[33]

ABC is an inscribed triangle inside a circle which centre is $\mathrm{M}, \overline{\mathrm{MD}} \perp \overline{\mathrm{BC}}$ and $\overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$, prove that:

1) $\overline{\mathbf{E D}} / / \overline{\mathbf{A B}}$
2) Perimeter of $\Delta \mathbf{C D E}$
$=\frac{1}{2}$ perimeter of $\Delta \mathrm{ABC}$
[34]
AB is a chord of circle
$\mathbf{M}, \overrightarrow{\mathbf{A C}}$ bisects $\angle \mathbf{B A M}$ andintersects circle M at \mathbf{C} if \mathbf{D} is the midpoint of $\overline{\text { ABprove that: }} \overline{\mathbf{D M}} \perp \overline{\mathbf{C M}}$

[35]

M is a circle with radius
length $5 \mathrm{~cm} \mathrm{XY}=12 \mathrm{~cm}$
, $\overline{\mathbf{M Y}} \cap$ circle $\mathbf{M}=\{\mathbf{Z}\}$ and $Z Y=8 \mathrm{~cm}$. prove that:
$\overleftrightarrow{\mathbf{X Y}}$ is a tangent to the
 circle M at X

[36]

In the opposite figure find the length of $\overline{\mathbf{A B}}$

[38]

Find m $(\angle A)$

[39]

Find the length of :
$\overline{\mathrm{MB}}, \overline{\mathrm{NC}}$

[40]

If the length of the radius M is 8 cm and the length of the radius of the circle N is $\mathbf{3} \mathbf{~ c m}$ thenfind the length of $\overline{\mathrm{BC}}$

[41]

M and N are two intersecting circles at A and B, the two radii lengthare 8 cm and 6 cm respectively and $X Y=4 \mathrm{~cm}$. study the

figure thenanswer the following questions:

1) Complete : i) $\mathrm{YM}=. \mathrm{cm}$
ii) $\mathbf{C X}=. \mathrm{cm}$
iii) $\mathbf{C D}=. \mathrm{cm}$
2) Is the perimeterof the triangle $\mathbf{A N M}=$ the length of $\overline{\mathrm{CD}}$? Explain the answer.
3) What is the measure of \angle NAM.
4) find the area of the triangle NAM.
5) What is the length of the common chord $\overline{\mathrm{AB}}$

[42]

AB is a diameter in circle M
$\overleftrightarrow{\mathbf{A C}}$ and $\overleftrightarrow{\mathbf{B D}}$ are two tangents of the circle M, CM intersects the circle M at X and Y and intersectsBD at E.prove that : $\mathrm{CX}=\mathrm{YE}$

[43]

M and N are two intersecting circles at A and B, C and
$D \in \overrightarrow{\mathbf{B A}}, \mathbf{D} \in$ the circle at N and
$\mathrm{m}(\angle \mathrm{MND})=125^{\circ}$
$\mathrm{m}(\angle \mathrm{BCD})=55$

Pr ove that $\overleftrightarrow{C D}$ is a tangent to the circle N at D

[44]

Circle M has a radius length $7 \mathrm{~cm}, \overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two perpendicular and intersecting chords at point O. if $\mathrm{AB}=12 \mathrm{~cm}$ and $\mathrm{CD}=10 \mathrm{~cm}$ find the length of $\overline{\mathrm{MO}}$
[45] Draw three circles touching externally, two - by two their radii length are $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm

[46]

Draw the triangle $A B C$ in which $A B=6 \mathrm{~cm}, \mathrm{~m}(\angle A)=40^{\circ}$ and the radius length of the circumscribed circle about the triangle $A B C$ equals 5 cm . If D is the mid - point of $\overline{\mathrm{AB}}$, then calculate the length of $\overline{\mathrm{MD}}$ where M is the centre of the circumscribed circle about the triangle

[47]

Find the equation of the straight line perpendicular to $\overline{A B}$ from its midpoint C where $A(1,3)$ and $B(3,5)$

[48*] In the opposite figure:

Two concentriccircles at M, the radius length of the great circle is r_{1} and the radius length of the small circle is $r_{2}, \overline{\mathrm{AB}}$ is a chord in the great circle and touches the small circle at C,

$\mathrm{AB}=7 \mathrm{~cm}$.find the area of the shaded $\operatorname{region}\left(\pi=\frac{\mathbf{2 2}}{\mathbf{7}}\right.$)

[49*] In the opposite figure:

M and N are two circles with radii of lengths 4 cm and 5 cm
$\overrightarrow{A C}$ touchescircle M at A and cuts circle N at B and C where $B C=6 \mathrm{~cm}$ and $M N=12 \mathrm{~cm}$.

1) Prove that : the quadrilate ral MACN is a trapezium and find its area
2) If $\mathbf{C D}=\mathbf{C B}$ find the distance between N and $\overline{\mathrm{CD}}$
[50*] In the opposite figure:
M is a circle , $\overline{B C}$ is a chord in it $\overrightarrow{\mathbf{B A}}$ is a tangent at B.
$\overrightarrow{\mathbf{A M}} \perp \overline{\mathbf{B C}}, \overrightarrow{\mathbf{M A}} \cap \overline{\mathbf{B C}}=\{\mathbf{D}\}$
$\mathrm{MB}=3 \mathrm{~cm}$ and $\mathrm{AB}=4 \mathrm{~cm}$.
Find the length of $\overline{\mathrm{BC}}$

[51* In the opposite figure:
$\overline{\mathrm{AB}}$ touches circle M at A
$\overline{\mathrm{MB}}$ cuts circle M at D and $\overline{\mathbf{A C}} \perp \overline{\mathbf{M B}}$ cutting it at C if $\mathrm{MC}=\mathbf{3 . 6}$. and $B D=4 \mathrm{~cm}$, calculate the length of the radius of circle M
[52*]

Using geometrictools, draw AB where $\mathrm{AB}=8 \mathrm{~cm}$. and draw a circle passing through A and B where its radius length $=5 \mathrm{~cm}$ (Don 't remove the arcs)
[53*]
Using geometric instruments draw $\triangle \mathrm{ABC}$ in which $A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$. then draw the circle which passes through the points A, B, C

[54] Choose:

1) The inscribed angle drawn in a semi circle
(acute, right , obtuse, straight angle)
2) The shape that the circle not passing through its vertices is
(triangle, square, rectangle, rhombus)
3) In the opposite figure : M is a circle ABCD is a ciclic quadrilateral , $\mathrm{m}(\angle \mathrm{C})=100^{\circ}$ then :
i) $\mathbf{m}(\angle \mathbf{A})=$
[$80,100,120,160$]
ii) $m(B C D)=.{ }^{\circ}$ [$40,80,160,200]$
4) In the opposite figure :
$\overrightarrow{\mathrm{AD}}$ is a tangent in the circle M at D
, $\overrightarrow{\mathbf{A M}} \cap$ circle \mathbf{M}

$$
\begin{aligned}
= & \{B, C\}, \mathrm{AB}=4 \mathrm{~cm}, \\
& \mathrm{BC}=8 \mathrm{~cm}, \mathrm{~m}(\angle \mathrm{C})=30^{\circ}
\end{aligned}
$$

, then
i) $m(\angle \mathrm{ADB})=\ldots^{\circ}[30,60,90,120]$
ii) $\mathrm{AD}=\ldots \ldots . . \mathrm{cm}[4,4 \sqrt{3}, 8,8 \sqrt{3}]$

[55] Complete:

1) The two tangents drawn from a point outside the circle are \qquad
2) Measure of the inscribed angle equal
measaure of the central angle subtended by the same are
3) A circle its perimeter $=44 \mathrm{~cm}$ then the length of the arc of measure 90° in the circle $=. ~ c m ~$
4) Measure of the exterior angle at any vertex of a cyclic quadrilateral measure of opposite adjacen inerior angle
5) In the opposite figure:
$\Delta \mathrm{ABC}$ where $\overline{\mathbf{C X}} \perp \overline{\mathbf{A B}}$ $, \overline{\mathrm{BY}} \perp \overline{\mathrm{AC}}, \mathrm{m}(\angle \mathrm{YBC})=40^{\circ}$ then
i) The figure is a cyclic quadrilateral.
ii) $\mathbf{m}(\angle \mathbf{C X Y})=.{ }^{\circ}$

[56] a) In the opposite figure:
M is a circle $, \overline{A B}, \overline{\mathbf{C D}}$ are two parallel chords , $m(A C)=\mathbf{m}(A B)$, find :

i) $\mathbf{m}(\angle \mathrm{MAB})$

ii) $\mathrm{m}(\mathrm{CD})$
b) In the opposite figure:

$\overline{\mathrm{AB}}, \overline{\mathrm{CD}}$ in the circle M
, $\overline{\mathbf{A B}} \cap \overline{\mathbf{C D}}=\{\mathbf{E}\}$,
ED = EB prove that:
$\Delta \mathrm{ACE}$ is an isosceles triangle.

[57] a) Prove that if the quadrilateral is a cyclic each two opposite angles are supplementary b) ABCD is a quadrilateral where $A B=A D$, $\mathrm{m}(\angle \mathrm{ABD})=35^{\circ}$,$m(\angle \mathrm{BCD})=70^{\circ}$, Prove that:

i) ABCD is a cyclic quadrilateral

ii) $\overrightarrow{\mathbf{C A}}$ bisects $\angle \mathbf{B C D}$
[58] In the opposite figure:
$\overrightarrow{\mathbf{X A}}, \overrightarrow{\mathbf{X B}}$ are two tangents at $\mathrm{A}, \mathrm{B}, \mathrm{m}(\angle \mathrm{AXB})=50^{\circ}$

$$
, \mathrm{m}(\angle \mathrm{DCB})=115^{\circ}
$$

, prove that :
i) $\overrightarrow{\mathrm{AB}}$ bisects ($\angle \mathrm{DAX}$)
ii) $\overrightarrow{\mathbf{A D}} / / \overrightarrow{\mathrm{XB}}$

[59] Choose:

1) The central angle of measure 90° opposite to an arc
of length $=$............. circumference of
the circle. $\left(\frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}\right)$
2) Measure of arc which represent half the measure

$$
\text { of the circle }=.^{\circ}(90,180,270,360)
$$

3) In the cyclic quadrilateral each two opposite angles are $\binom{$ equal , supplementary, compplementary }{, corresponding }
4) Measure of the exterior angle at any vertex of a cyclic quadrilateral measure of opposite adjacen inerior angle $(>,<,=, \neq)$
5) Number of common tangents drawn to distant circles $=\ldots(4,3,2$, infinite $)$
6) $\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangents at B and C of a circle of radius length 3 cm , if $A B=5 \mathrm{~cm}$ then $\mathrm{AC}=\ldots \mathrm{cm}(2,3,5,8)$

[60] Complete:

1) Measure of the inscribed angle drawn in a semi circle =
2) The two parallel chords subtended two arcs in measure
3) If two opposite angles in a quadrilateral are supplementary then this quadrilateral is
4) If two chords are intersecting inside the circle then the measure of intersection angle equals sum of measures of the two oppsite arcs to this angle.
5) The two tangents at the ends of a diameter in a circle are
6) Measure of the angle of tangency equals measure of central angle subtended by the same arc.
[61] a) In the opposite figure: $\overline{\mathrm{AB}}$ is a chord in the circle $\mathbf{M}, \overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}$ prove that $\mathrm{m}(\angle \mathrm{AMC})$
$=\mathbf{m}(\angle \mathrm{ADB})$
b) In the opposite figure:
$\overline{\mathrm{AB}}$ is a diameter in the circle M, X is a midpoint of $\overline{\mathbf{A C}}, \overrightarrow{\mathbf{X M}}$ intersect the tangent of the circle at B in Y, prove that AXBY is a cyclic quadrilateral

[62] a) In the opposite figure: $\overline{\mathrm{AE}}, \overline{\mathrm{BF}}$ are two equal chords in the circle, $\overrightarrow{\mathbf{A E}} \cap \overrightarrow{\mathbf{B F}}$ $=\{D\}$ prove that ED $=$ FD

b) In the opposite
figure : $\overrightarrow{\mathbf{X A}}, \overrightarrow{\mathbf{X B}}$ are two tangents at A, B,
$m(\angle \mathrm{AXB})=70^{\circ}, \mathbf{m}(\angle \mathrm{DCB})$
$=125^{\circ}$ prove that :
$\overrightarrow{\mathbf{A B}}$ bisect ($\angle \mathrm{DAX}$)

[63] a) In the opposite figure:
$\mathbf{F} \in \overrightarrow{\mathbf{A B}}, \mathbf{F} \notin \overline{\mathbf{A B}}$
, $m(A B)=110^{\circ}$
, $\mathrm{m}(\angle \mathrm{CBF})=85^{\circ}$
Find $m(\angle B D C)$

b) ABC is a triangle drawn inside the circle,$\overleftrightarrow{A D}$ is a tangent to the circle at $\mathbf{A}, \mathbf{X} \in \overline{\mathbf{A B}}, \mathbf{Y} \in \overline{\mathbf{A C}}$ where $\overline{\mathbf{X Y}} / / \overline{\mathbf{B C}}$ prove that $\overleftrightarrow{A D}$ is a tangent to the circle passing through

A, X, and Y

[64] Choose:

1) Number of drawn tangents from a point outside a circle $=$.......... $(1,2,3$, infinite $)$
2) The length of the arc opposite to the inscribed angle of measure 45° in a circle
$\left(\pi r, \frac{1}{4} \pi r, \frac{1}{8} \pi r, \frac{1}{2} \pi r\right)$
3) In the opposite figure: ABCD is a cyclic quadrilateral, $\mathrm{AB}=\mathrm{AC}$, $\mathbf{m}(\angle \mathrm{ACB})=70^{\circ}$ then $\mathrm{m}(\angle \mathrm{BDC})$ $=\ldots{ }^{\circ}(40,70,140,100)$

4) If the quadrilateral is a cyclic then every two opposite angles are $\binom{$ equal in measure , commutative }{, compplementary , supplementary }
5) In the opposite figure circle $M, \overrightarrow{B X}$ is a tangent of a circle at B,
$m(\angle X B A)=40^{\circ}$ then m
$(\angle \mathrm{ABM})=\ldots^{\circ}(80,40,20,100)$

6) In the opposite figure :
$\mathbf{m}(\angle A)=30^{\circ}, \mathbf{m}(B C)=100^{\circ}$
, then $\mathrm{m}(\mathrm{DE})=.$. .
($30,40,130,70)$
[65] Complete:

7) In the opposite figure :
$\mathbf{m}(\angle \mathrm{ABE})=110^{\circ}$
, $m(\angle D A C)=40^{\circ}$
then $m(\angle D C A)=$

8) In the opposite figure :
$\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ are two tangents to the circle M,
$m(\angle A)=70^{\circ}$
then $\mathbf{m}(B C)=.{ }^{\circ}$
[66] a) In the opposite figure:

ABCD is a parallelogram, $\mathrm{AC}=\mathrm{BC}$
, prove that: $\overleftrightarrow{\mathbf{D C}}$ is a tangent for circumcircle of $\triangle \mathrm{ABC}$

b) In the opposite figure: ABCD is a cyclic quadrilateral drawn inside the circle , $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$. prove that: AXYD is a cyclic quadrilateral
[67] a) In the opposite figure:
 $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\mathrm{AC})=50^{\circ}$, $\mathrm{m}(\angle \mathrm{BED})=(3 \mathrm{y}-5)^{\circ}$ then find the value of y by degree.
b) $\overrightarrow{\mathrm{XA}}, \overrightarrow{\mathrm{XB}}$ are two tangents
 at $\mathrm{A}, \mathrm{B}, \mathrm{m}(\angle \mathrm{AXB})=\mathbf{5 0}{ }^{\circ}$, $\mathbf{m}(\angle \mathrm{DCB})=115^{\circ}$, prove that :
i) $\overrightarrow{\mathbf{A B}}$ bisects $(\angle \mathrm{DAX})$
ii) $\mathbf{B A}=\mathbf{B D}$
[68] a) In the opposite figure:

$\overline{\mathrm{AB}}, \mathrm{AC}$ are two tangents, $\overline{\mathrm{BD}}$ is a diameter in the circle M . prove that:
$\overline{\mathrm{CD}} / / \overline{\mathrm{AM}}$
b) ABC is a triangle

, $\mathrm{m}(\angle \mathrm{A})=60^{\circ}$ draw $\overrightarrow{\mathrm{BD}}$ bisect $\angle \mathrm{B} \operatorname{cut} \overline{\mathrm{AC}}$ at D
 $\operatorname{cut} \overrightarrow{\mathbf{A B}}$ at $\mathrm{E}, \overrightarrow{\mathrm{BD}} \cap \overrightarrow{\mathbf{C E}}=\{\mathbf{F}\}^{\mathbf{C}}$ prove that AEFD is a cyclic quadrilateral

[69] Complete:

1) Measure of inscribed angle drawn in a semi circle $=\ldots . .$.
2) The trapezium can be cyclic quadrilateral if
3) The two tangents drawn from a point outside the circle are
4) In the opposite figure: if ABCD is a cyclic quadrilateral then $\mathbf{y}=$

5) In the opposite figure: the value of $y=. \mathrm{cm}$
6) The two parallel chords subtended two arcs

[70] Choose:

1) Measure of the exterior angle at any vertex of a cyclic quadrilateral measure of
opposite adjacen inerior angle $(>,<,=, \neq)$
2) Number of common tangents
drawn to distant
circles $=\ldots(4,3,2$, infinite $)$
3) In the opposite figure: the value of $y=. ~ c m ~$ $(9,4,12,18)$
4) The length of the arc which represent $\frac{1}{4}$ circumference of the circle

$=\left(2 \pi r, \pi r, \frac{1}{2} \pi r, \frac{1}{4} \pi r\right)$
5) In the cyclic quadrilateral the sum of each two opposite angles $=\ldots^{\circ}(360,180,90,270)$
6) Measure of the angle of tangency equals measure of the central angle subtended by the same $\operatorname{arc}\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{3}\right.$,twice $)$
[71] a) In the opposite figure:
M is a circle,$\overleftrightarrow{C D}$ is a tangent at $\mathbf{C}, \overline{\mathrm{AB}}, \overline{\mathrm{EF}}$ are two chords in the circle where:

$\overline{\mathbf{A B}} / / \overline{\mathbf{E F}} / / \overleftrightarrow{\mathbf{C D}}$

Prove that : $\mathrm{CE}=\mathbf{C F}$

b) $\overline{\mathrm{AB}}$ is a diameter in the circle M . D is the midpoint of $\overline{\mathrm{AC}}$ and $\overrightarrow{\mathrm{BE}}$ is a tangent to the circle to cut $\overrightarrow{\mathrm{DM}}$ at E Prove that: 1) the figure ADBE is a cyclic quadrilateral 2) $\mathbf{m}(\angle \mathrm{CMB})=\mathbf{m}(\angle \mathrm{BED})$

[72] a) In the opposite figure:

In the opposite figure : $\mathbf{m}(\angle \mathbf{B})=\mathbf{8 0}, \overline{\mathbf{A D}} / / \overrightarrow{\mathbf{B C}}$
, CF bisect $\angle \mathrm{DCE}, \mathrm{m}(\angle \mathrm{DCF})=50^{\circ}$ prove that ABCD is a cyclic quadrilateral.

b) ABC is an equilateral triangle inscribed in a circle $D \in A B$ the point $\mathbf{E} \in \overline{\mathrm{DC}}$ where $\mathrm{AD}=\mathbf{D E}$ Prove that : Δ ADE is an equilateral triangle
[73] In the opposite figure:
$\overrightarrow{\mathrm{XA}}, \overrightarrow{\mathrm{XB}}$ are two tangents at $\mathrm{A}, \mathrm{B}, \mathrm{m}(\angle \mathrm{AXB})=50^{\circ}$, $m(\angle \mathrm{DCB})=115^{\circ}$, prove that :

i) $\overrightarrow{\mathrm{AB}}$ bisects $(\angle \mathrm{DAX})$
ii) $\mathbf{B A}=\mathbf{B D}$
[74] In the opposite figure:
AB is a diameter of the circle M $\mathbf{m}(\angle \mathrm{CMD})=70^{\circ}, \mathbf{m}(\mathrm{AB}): \mathbf{m}(\mathrm{DB})$
= 5: 6 Find: m(ACD)
[75] In the opposite figure:

$\overline{\mathrm{AB}}$ is a diameter in the circle M then complete:

1) $x=$
2) $m(A D)=.^{\circ}$ 4) $m(B C)=$
3) $\mathbf{m}(\mathrm{CAD})=.^{\circ}$
4) $\mathbf{m}(\mathrm{CBD})=\ldots^{\circ}$
5) $m(A C D)=.{ }^{\circ}$
6) $\mathrm{m}(\mathrm{AC})=$ \qquad
7) $m(\mathrm{ADC})=$
[76] In the opposite figure:
M is a circle with radius 5 cm
$\mathbf{m}(\mathrm{AB})=108^{\circ}$, find:
The length of $\mathrm{AB},(\pi=3.14)$

[77] In the opposite figure: two concentric circles, the radius length of the small circle is 7 cm the radius length of the large circle is 8 cm
$\left(\pi=\frac{22}{7}\right)$ then complete:
In the small circle:

8) $\mathbf{m}(\mathrm{AB})=\mathbf{m}(.)=.\ldots{ }^{\circ}$ $\frac{22}{7} \times \ldots \ldots=\ldots . . \mathrm{cm}$.
9) The length of $\mathbf{A B}=\frac{50}{360} \times 2 \times \frac{22}{7} \times$.cm
10) length of $\mathrm{CD}=$ \times....... $=$
In the large circle:
11) $\mathbf{m}(E F)=\mathbf{m}(.)=$. \qquad length of $E F=. \times$....... $=. c m$ Length of $\mathrm{XY}=. \times=. c m$.
[78] In the opposite figure: $\mathrm{m}(\mathrm{AB})=60^{\circ}, \mathbf{m}(\mathrm{BC})=80^{\circ}$, $\mathrm{m}(\mathrm{AD}): m(\mathrm{DC})=4: 7$
a) State the equal arcs in measure
b) State the equal ares in length
c) Draw the equal chords

[79] In the opposite figure:
M is a circle,$\overleftrightarrow{\mathbf{C D}}$ is a tangent at $\mathbf{C}, \overline{\mathbf{A B}}, \overline{\mathbf{E F}}$ are two chords in the circle where: $\overline{\mathrm{AB}} / / \overline{\mathrm{EF}} / / \overleftrightarrow{\mathrm{CD}}$
Prove that : $\mathbf{C E}=\mathbf{C F}$
[80] In the opposite figure:

M is a circle with radius length $15 \mathrm{~cm}, \overline{\mathrm{AB}}, \overline{\mathbf{C D}}$ two parallel chords in the circle, $\mathbf{m}(\mathrm{AC})=80^{\circ}$ length of $\mathrm{AC}=$ length of AB
a) $\mathbf{m}(\angle \mathrm{MAB})$
b) $\mathbf{m}(C D)$
c) Length of CD
[81] In the opposite figure: $\overleftrightarrow{C D}$ is a tangent of the circle M at D, find:
a) $\mathbf{m}(\mathrm{DB})$
b) $\mathbf{m}(\mathrm{AD})$

[82] In the opposite figure:
$\overleftrightarrow{C D}$ is a tangent of the circle Mat D
find : m(ABD)
[83] In the opposite figure: $\overline{\mathbf{A B}}$ is a diameter in
 the circle $\mathbf{M} \overrightarrow{\mathbf{A B}} \cap \overrightarrow{\mathbf{C D}}=\{\mathbf{E}\}$, $\mathrm{m}(\angle \mathrm{AEC})=30^{\circ}$, $\mathbf{m}(\mathrm{AC})=\mathbf{8 0}{ }^{\circ}$, find $m(C D)$
[84] In the opposite figure:

ABCDE is a regular pentagon drawn in the circle $M \overleftrightarrow{A X}$ is a tangent at $\mathbf{A} \overleftrightarrow{\mathbf{E X}}$ is a tangent at \mathbf{E} where $\overleftrightarrow{\mathbf{A X}} \cap \overleftrightarrow{\mathbf{E X}}=\{\mathbf{X}\}$

Find : a) m(AE)
b) $\mathbf{m}(\angle \mathrm{AXE})$
[85] In the opposite figure:

A is a point outside the circle $M, \overrightarrow{A B}$ is a tangent to the circle at $\mathbf{B}, \overrightarrow{\mathbf{A M}}$ intersects the circle M at C and D respectively $\mathbf{m}(\angle A)=40^{\circ}$ find with proof $\mathbf{m}(\angle$ BDC $)$

[86] In the opposite figure:
$\overline{\mathrm{AB}}$ is a chord of circle
$\mathbf{M}, \overline{M C} \perp \overline{\mathbf{A B}}$ Prove that: $\mathbf{m}(\angle \mathrm{AMC})=\mathbf{m}(\angle \mathrm{ADB})$

[87] In the opposite figure: ABC is an inscribed triangle in circle M,
$\mathbf{m}(\mathrm{AB}): \mathbf{m}(\mathrm{BC}): \mathbf{m}(\mathrm{AC})$
$=4: 5: 3$ find $\mathrm{m}(\angle \mathrm{ACB})$
[88] In the opposite figure:

ABC is an inscribed triangle in circle M,
$\mathbf{m}(A B): \mathbf{m}(B C): \mathbf{m}(A C)$
$=4: 5: 3$ find $m(\angle A C B)$

[89] In the opposite figure: $m(\angle A)=36^{\circ}$, $m(E C)=104^{\circ}$ find: a) $\mathrm{m}(\mathrm{BD})$
b) $\mathbf{m}(\mathrm{DE})$
[90] In the opposite figure

$$
\overrightarrow{\mathbf{C B}} \cap \overrightarrow{\mathbf{E D}}=\{\mathbf{A}\}, \overline{\mathbf{B E}} \cap \overline{\mathbf{C D}}=\{\mathbf{F}\} \text { if : }
$$

$$
\mathbf{m}(\angle A)=30^{\circ}, \mathbf{m}(B D)=44^{\circ}
$$

$$
\mathrm{m}(\angle \mathrm{DCE})=48^{\circ}, \text { find: 1) } \mathrm{m}(\mathrm{CE}) \quad \text { 2) } \mathrm{m}(\mathrm{BC})
$$

[91] In the opposite figure $\overline{\mathrm{AB}}$ is a chord in circle $\mathrm{M}, \overline{\mathrm{CM}} / / \overline{\mathrm{AB}}$ $\overline{\mathbf{B C}} \cap \overline{\mathbf{A M}}=\{\mathbf{E}\}$, prove that:
BE $>\mathrm{AE}$

[92] In the opposite figure
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords in
the circle, $\overline{\mathbf{A B}} \cap \overline{\mathbf{C D}}=\{\mathbf{E}\}$
$\mathbf{m}(\angle \mathrm{DEB})=110^{\circ}, \mathbf{m}(\mathrm{AC})=100^{\circ}$
Find: m($\angle \mathrm{DCB})$
[93] In the opposite figure Find $\mathbf{m}(\angle \mathbf{B A C})$

[94] In the opposite figure

B
M and N are two intersecting circles at A and $B, \overleftrightarrow{A C}$ int er sec ts the circle M at C and intersects the circle N
at $D, \overleftrightarrow{A E}$ intersects the circle M at E, and the circle N at F. prove that: $\mathbf{m}(\angle \mathrm{EBC})=\mathbf{m}(\angle \mathrm{FBD})$

[95] In the opposite figure:
A is a point outside the circle

$M, \overrightarrow{\mathbf{A B}}$ is a tangent to the

 circle at $B, \overrightarrow{\mathbf{A M}}$ intersects the circle M at C and D respectively $\mathrm{m}(\angle \mathrm{A})=40^{\circ}$ find with proof $m(\angle B D C)$ [96] Complete:1) The number of symmetry axes in the isosceles Triangle is
2) The measure of the angle of tangency equals half the measure of.
3) The two arcs intercepted by a chord in a circle and a parallel tangent to it
4) In the cyclic quadrilateral ABCD , if :
$m(\angle A)=\frac{1}{2} m(\angle C)$, then $m(\angle A)=$
5) If the quadrilateral is a cyclic, then each two opposite angles of it are
6) The inscribed angles intercepted the same arc are
7) The measure of the tangency angle equals the measure of angle which has the same arc.
8) If the measure of an arc of circle $=60^{\circ}$, then its length $=\ldots \ldots \ldots . .$. . The circumference of the circle.
9) If $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent - segments to the Circle M at B and C then $\overleftrightarrow{M A}$ is the symmetry
Axis of
10) The centre of the inscribed circle of any triangle is The point of intersection of

[97] Complete:

1) The distant between the two points (2,6) and ($-1,6$) equals Length unit.
2) The two tangent-segments drawn from a point outside a circle to it are
3) The inscribed angles that intercept the same arc are
4) In the cyclic quadrilateral ABCD , if $\mathrm{m}(\angle A)=\mathbf{2 m}(\angle B)=5 \mathrm{~m}(\angle C)$ then $\mathrm{m}(\angle \mathrm{D})=$
5) If the points M, A, B, C, and D are coplanar points such that $\mathrm{MA}=\mathrm{MB}=\mathrm{MC}=\mathrm{MD}$ then the figure ABCD is
6) The measure of the arc intercepted by an inscribed angle with measure $90^{\circ}=\ldots \ldots$.
7) The length of a rectangle is $\mathbf{6} \mathbf{~ c m}$. and its perimeter is 16 cm . then its area $=\ldots \ldots \ldots \mathrm{cm}^{2}$
8) ABCD is a cyclic quadrilateral. if $\mathrm{m}(\angle \mathrm{B})=60^{\circ}$ Then $\mathbf{m}(\angle \mathrm{D})=$
9) If the two measures of two arcs in a circle are equal Then their chords are
10) The two tangents drawn at the two ends of a Diameter of a circle are
[98] Complete:
11) The inscribed angle drawn in a semicircle is
12) The measure of the arc that represents $\frac{1}{9}$ the

Measure of the circle $=$
3) If the measures of two angles in a trapezium are 100° and 110°, then the measures of the two other angles respectively are (......... and)
4) The area of a square is $16 \mathbf{~ c m}^{2}$, then its perimeter =
5) The measure of the circle $=$
6) The number of tangents drawn to a circle from a point outside $=$
7) The length of arc that represent $\frac{1}{4}$ the circumference Of a circle =
8) The inscribed angle that is opposite to a minor arc in A circle is Angle.
9) In the cyclic quadrilateral, each two opposite angles Are
10) The measure of the tangency angle equals half the Measure of

[99] Complete:

1) The measure of the exterior angle of a cyclic

Quadrilateral the interior angle that opposite To the adjacent angle.
2) If the total area of the faces of a cube equals $294 \mathbf{~ c m}^{2}$ then the length of each edge of the cube $=$
3) The product of the two slops of two orthogonal straight lines equals
4) The perimeter of the square $=$

The side length \times
5) The two parallel chords in a circle intercept two arcs in measure.
6) The ratio between the two sums of measures of the Interior angles of two similar polygons equals the Ratio
7) Twice the measure of the tangency angle the measure of the central angle that has the same arc of It.
8) The measure of a semicircle equals While the Length of arc of the semicircle whose radius length is r equals
9) The length of the arc that opposite a central angle

Of measure 120° of a circle with radius length

$$
2.1 \mathrm{~cm} \text {. is (Where } \pi=\frac{22}{7} \text {) }
$$

10) In an orthogonal coordinate, if $\overline{A B}$ is a diameter of a Circle whose centre M where $A(3,4)$ and B ($3,-2$), then the coordinates of $M=(\ldots \ldots, \ldots .$.

[100] Complete:

1) The area of the square whose side length is L equals Square unit
2) The radius length of a circle M is r, then the central Angle whose measure 90° is opposite to an arc with Length
3) The measure of the arc which represents $\frac{2}{5}$ the measure of the circle $=$
4) The centre of the circumcircle of any triangle is the point of intersection of
5) The number of common tangents drawn to two Distant circles is
6) The parallelogram has Symmetry axes.
7) The measure of the semicircle whose radius length is r $=$
8) The measure of an arc of a circle equals twice the measure of
9) The altitude of the triangle
10) The complementary of the acute angle is angle.

[101] Complete:

1) The perimeter of an equilateral triangle is 12 cm . then the side length of this triangle $=. \mathbf{C m}$
2) The number of symmetry axes of the isosceles trapezium =
3) If the area of a square is 144 , then its perimeter Equals cm
3) In the cyclic quadrilateral ABCD , if $\mathrm{m}(\angle \mathrm{B})=80^{\circ}$ Then $m(\angle D)=$

Solution:

[96]

1) 1
2) Central angle subtended by the same arc
3) are equal in measure
4) $\mathrm{m}(\angle \mathrm{A})+2 \mathrm{~m}(\angle \mathrm{~A})=180^{\circ} \Rightarrow \mathrm{m}(\angle \mathrm{A})=60^{\circ}$
5) Supplementary
6) Equal in measure
7) Inscribed
8) $\frac{60}{360}=\frac{1}{6}$
9) $\overline{\mathrm{BC}}$
10) The bisectors of its interior angles.
[97]
11) $\sqrt{(2-(-1))^{2}+(6-6)^{2}}=\sqrt{3^{2}}=3$
12) Equal in length
13) Equal in measure
14) $\mathrm{m}(\angle \mathrm{C})+5 \mathrm{~m}(\angle \mathrm{C})=180^{\circ} \Rightarrow \mathrm{m}(\angle \mathrm{C})=\frac{180^{\circ}}{6}=30^{\circ}$ $\mathrm{m}(\angle \mathrm{A})=5 \times 30^{\circ}=150^{\circ} \Rightarrow \mathrm{m}(\angle \mathrm{B})=150^{\circ} \div 2=75^{\circ}$ $m(\angle D)=180^{\circ}-75^{\circ}=105^{\circ}$
15) Cyclic quadrilateral.
16) 180°
17) $\mathrm{W}=\frac{\mathrm{P}}{2}-\mathrm{L}=\frac{16}{2}-6=8-6=2 \Rightarrow \mathrm{~A}=6 \times 2=12 \mathrm{~cm}^{2}$
18) 120°
19) Equal in length
20) Parallel
[98]
21) 135°
22) $\frac{1}{9} \times 360^{\circ}=40^{\circ}$
23) $\left(80^{\circ}, 70^{\circ}\right)$
24) 16
25) 360°
26) 2
27) $\frac{1}{4} \times 2 \pi r=\frac{\pi r}{2}$
28) Acute angle
29) Supplementary
30) Central angle subtended by the same arc
[99]
31) Equal the measure
32) $S^{2}=\frac{294}{6}=49 \quad \therefore S=\sqrt{49}=7 \mathrm{~cm}$
33) -1
34) 4
35) Equal
36) 1
37) $=$
38) $\pi \mathbf{r}$
39) $\frac{120}{360} \times 2 \times \frac{22}{7} \times 2.1=4.4 \mathrm{~cm}$
40) $\left(\frac{3-3}{2}, \frac{-2-4)}{2}\right)=(0,-3)$
[100]
41) \mathbf{L}^{2}
42) $\frac{90}{360} \times 2 \times \pi \times r=\frac{\pi \times r}{2}$
43) $\frac{2}{5} \times 360^{\circ}=144^{\circ}$
44) The intersection of the axes of its sides
45) 4
46) 0
47) 180°
48) Inscribed angle subtended by this arc
49) are concurrent
50) Acute
[101]
51) $12 \div 3=4 \mathrm{~cm}$
52) 1
53) $S=\sqrt{144}=12 \mathrm{~cm} \quad \Rightarrow P=12 \times 4=48 \mathrm{~cm}$
54) 100°
[102] In the opposite figure:
$\mathrm{BA}=\mathrm{BC}, \mathrm{m}(\angle \mathrm{ADE})=130^{\circ}$
And m($\angle \mathrm{BAC})=25^{\circ}$
Prove that ABCD is
A cyclic quadrilateral

[103] In the opposite figure:

$\overleftrightarrow{X Y}$ is a common tangent to the
Two circles M and N that Touching internally at \mathbf{A} Pr ove that: $m(A B)=m(A C)$

[104] In the opposite figure:
X is the midpo int of $\overline{\mathrm{AB}}$ and Y
Is the midpo int of $\overline{\mathrm{AD}}$
Pr ove that :

1) The figure AXMY is a cyclic Quadrilateral
2) $\mathbf{m}(\angle \mathbf{X M Y})=\mathbf{m}(\angle \mathbf{C})$

[105] In the opposite figure:
C
ABCD is a quadrilateral inscribed in a circle, $\mathrm{m}(\angle \mathrm{ADE})=110^{\circ}$
And $\mathbf{m}(\angle \mathrm{ACB})=35^{\circ}$

Prove that:

ABC is an isosceles triangle

[106] In the opposite figure:

M and N are two circles
Touching externally at A
$\overleftrightarrow{\mathbf{B C}}$ is a common Tangent to the two Circles at B and C And $\overleftrightarrow{A D}$ is
A common tangernt
To them at A

Prove that:

1) $\mathrm{m}(\angle \mathrm{BAC})=90^{\circ}$
2) $\overleftrightarrow{M N}$ is a tangent to the circle pas sing through A, B and C
[107] In the opposite figure: $m(\angle \mathrm{ADC})=120^{\circ}$ and $\overline{\mathrm{AE}} / / \overline{\mathrm{DC}}$
3) Find: $m(\angle A B C)$
4) Pr ove that:

$$
\mathbf{m}(\angle \mathrm{ACD})=\mathbf{m}(\angle \mathrm{CBE})
$$

[108] In the opposite figure:

$\Delta \mathrm{ABC}$ is inscribed in a circle draw $\overleftrightarrow{\mathbf{A X}}$ as a tangent to
The circle at A draw
, $\overleftrightarrow{\mathrm{DE}} / / \overline{\mathrm{BC}}$ and to cut $\overline{\mathrm{AB}}$ At D and $\overline{A C}$ At E

Prove that $: \overleftrightarrow{\mathrm{AX}}$ is a tangent to the circle passing through A, Dand E
[109] In the opposite figure:
A, B and C are three
Po int $s \in$ the circle M if $M A=A B$
And $\overline{\mathrm{AB}} / / \overline{\mathrm{MC}}$, calculate
$\mathrm{m}(\angle \mathrm{AMC})$ and the length of the minor $\operatorname{arc}_{(A C)}$ if the the radius length
 of the circle is 7 cm .

[110] In the opposite figure:

$\overrightarrow{D B}$ and $\overrightarrow{D E}$ are two
Tangentsto the circle at B
and $\mathbf{E} \overrightarrow{D B} / / \overline{\mathrm{EC}}$ and
$\mathbf{m}(\angle \mathrm{D})=40^{\circ}$
Find: m($\angle \mathrm{ABC})$

[111] In the opposite figure:
 $\overline{\mathrm{AB}}$ is a diameter of the circle M the length of AD
 $=$ the length of BD and
 $\mathrm{m}(\angle \mathrm{CAB})=35^{\circ}$
 Find $\mathbf{m}(\angle \mathrm{CBD})$

[112] In the opposite figure:

ABCD is a paralle logram.
$L \in \overline{\mathrm{AB}}$ such that LBC is
An equilateral triangle
Prove that:
The figure ALCD is
A cyclic quadriateral

[113] In the opposite figure:

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two tangent - segments to the circle M m($\angle \mathrm{DEB}$)
$=110^{\circ}$
and $m(\angle A)=40^{\circ}$
find : $m(\angle A C D)$

[114] In the opposite figure: M is a circle,$m(A D)=80^{\circ}$ and $m(D C)=70^{\circ}$
Calculate the measures of the angles of the quadrilateral ABCD

[115] In the opposite figure:

1) Find:m($\angle \mathrm{ABC}), \mathrm{m}(\angle \mathrm{DBC})$

And $\mathbf{m}(\angle \mathrm{BCD})$
2) Pr ove that : $\overline{\mathbf{C D}}$

Touches the
Circumcircle of $\Delta \mathrm{ABC}$

[116] In the opposite figure:

$\overleftrightarrow{X Y}$ is a tangent to the circle N at D and parallel to The chord $\overline{\mathrm{AB}}$ if $\mathrm{m}(\angle \mathrm{ANB})=148^{\circ}$
Find $\mathbf{m}(\angle \mathrm{BCD})$

[117] In the opposite figure:

[118] In the opposite figure:

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two
Tangents to the circle And $\mathrm{BC}=\mathrm{CD}=\mathrm{DB}$
Find: m($\angle \mathrm{A})$

[119] In the opposite figure:

$\overline{\mathbf{A B}} / / \overline{\mathrm{DE}}, \overline{\mathrm{BC}} / / \overline{\mathrm{DF}}$
And $\mathrm{m}(\angle \mathrm{ADE})+\mathrm{m}(\angle \mathrm{CDF})=180^{\circ}$
Prove that:
The figure ABCD is a cyclic
Quadrilateral.
[120] In the opposite figure:
$\overline{\mathrm{XY}}$ is a diameter in the circle $\mathbf{N} \overline{\mathrm{XZ}}$ is a chord in it.draw $\overrightarrow{\mathbf{Y L}}$ a tangent to cut $\overrightarrow{\mathrm{XZ}}$ at L Prove that : $\overleftrightarrow{X Y}$ is a tangent to the circumcircle of $\Delta \mathrm{ZYL}$
[121] In the opposite figure: M is the centre of the circle And m $(\angle \mathrm{AMC})=\mathbf{m}(\angle \mathrm{B})$ Find: m($\angle \mathrm{B})$

[122] In the opposite figure:

 $\overline{\mathrm{AD}}$ is a diameter in the circle M And $m(\angle C A D)=40^{\circ}$ Find: m($\angle \mathrm{B})$[123] In the opposite figure: ABCD is a quadrilateral Inscribed in a circle in Which $A B=A D$ and $\mathrm{m}(\angle \mathrm{C})=110^{\circ}$, $\mathrm{m}(\angle \mathrm{ADX})=55^{\circ}$

Pr ove that: $\overrightarrow{\mathrm{DX}}$ is a tangent To the circle

[124] In the opposite figure:

$\overrightarrow{\mathrm{AE}}$ and $\overrightarrow{\mathrm{AC}}$ are two
Tangents to the circle At B and C respectively $\overrightarrow{\mathrm{AE}} / / \overline{\mathbf{C D}}$ and $\mathrm{m}(\angle \mathrm{A})=40^{\circ}$

1) Pr ove that : $\mathbf{C B}$ bi sects $\angle A C D$
2) Find : m($\angle \mathrm{CDB})$

[125] In the opposite figure:

$\overline{A B}$ is a diameter in the circle M $\mathbf{A C}=\mathbf{B D}$ and $\overline{\mathbf{A D}} \cap \overline{\mathbf{B C}}=\{\mathbf{E}\}$ Prove that:

1) $(\overparen{D C})=m \overparen{(D C})$
2) The figure ACEM is A cyclic quadrilateral

[126] In the opposite figure:

$\overleftrightarrow{\mathrm{AD}}$ is a tangent to the circle M At $\mathrm{A}, \overline{\mathrm{BC}}$ is a diameter to The circle $M, \overline{\mathrm{BD}} \perp \overleftrightarrow{\mathrm{AD}}$ Pr ove that : $\mathbf{m}(\angle \mathrm{ABD})=\mathbf{m}(\angle \mathrm{ABC})$

[127] In the following figure:

$\overline{\mathrm{AB}}$ is a diameter in the circle M. D is the midpoint of
$\overline{\mathbf{A C}}$ and $\overrightarrow{\mathbf{B E}}$ is a tangent to the circle to cut $\overrightarrow{\mathrm{DM}}$ at E Prove that: 1) the figure ADBE is a cyclic quadrilateral

2) $\mathbf{m}(\angle \mathrm{CMB})=\mathbf{m}(\angle \mathrm{BED})$

[128] In the opposite figure:

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two
tangent - segments
to the circle at B

2) Find : m($\angle \mathrm{CDE})$
3) Prove that : $\overline{\mathbf{C E}}$ is a tangent - segment to the

Circle passing through the points A, B and C
[129] In the opposite figure:
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords of A circle,$A B=A C$ and $m(A B)=130^{\circ}$ Find the measures of the angles of $\Delta \mathrm{ABC}$ in deg rees.
[130] In the opposite figure:
$\overline{\mathrm{AB}}$ is a diameter in the circle M

And $m(\angle \mathrm{ABC})=\mathbf{5 0}^{\circ}$
Find : m($\angle \mathrm{BDC}$)

[131] In the opposite figure:

M is a circle.
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are Two tangents to The circle at B And C and $\mathbf{m}(\angle \mathrm{BAC})=30^{\circ}$
Find : m($\angle \mathrm{AMB}$)

[132] In the opposite figure:

 ABCD is a cyclic quadrilateral in which $\mathbf{m}(\angle \mathrm{ABC})=70^{\circ}$ The length of AD$=$ The length of DC
Find : m($\angle A C D)$

[133] In the opposite figure:
LYZ is a triangle inscribed in
A circle,$\overleftrightarrow{X Y}$ is a tangent to
The circle at Y and $\overline{\mathbf{F E}} / / \overline{\mathbf{L Y}}$ Prove that:

1) $m(\angle E Y Z)=m(\angle E F Z)$
2) The figure EYFZ is

A cyclic quadriateral

[134] Complete:

1) Measure of the angle of tangency equals measure of subtended by the same arc.
2) In the opposite figure:
circle $M, \overline{\mathrm{AB}}$ is a diameter ,
$\mathrm{m}(\angle \mathrm{A})=\mathbf{3 0 ^ { \circ }}, \mathrm{BC}=\mathbf{4} \mathrm{cm}$
then the length of the diameter $=. ~ c m . ~$
3) In the cyclic quadrilateral each two opposite angles are
4) rectangle its length is 6 cm and its perimeter is 16 cm then its area $=. \mathrm{cm}^{2}$
5) measure of the arc represented $\frac{2}{5}$ of the circle $=$
6) In the opposite figure $A B=A C$ then the numerical value of $\mathrm{x}=$............. unit length.

[135] Choose:

1) In the opposite figure:
if $m(B C)=110^{\circ}, m(D E)=40^{\circ}$
then $\mathbf{m}(\angle A)=$ 110

$$
\left(35^{\circ}, 55^{\circ}, 75^{\circ}, 20^{\circ}\right)
$$

2) Number of tangentsof two distant circles $=$

$$
(1,2,3,4)
$$

3) In the opposite figure :
$\overrightarrow{\mathbf{A B}}, \overrightarrow{\mathbf{A C}}$ are two tangents of the circle M, if
$A M=5 \mathrm{~cm}, M C=3 \mathrm{~cm}$ then $\mathrm{AB}=. \mathrm{cm}$

4) In the opposite figure : $\overline{\mathbf{A M}}, \overline{\mathrm{BM}}$ are two perpendicular radii in the circle $M, r=7 \mathrm{~cm} \pi=\frac{\mathbf{2 2}}{7}$ then the perimeter of the shaded part $=$ cm
$(14,21,38.5,25)$
5) In the opposite figure :

M is a circle, $\mathrm{m}(\angle \mathrm{MAC})=35^{\circ}$ thenm $(\angle \mathrm{ABC})=\ldots$.
(70,55, 35, 50)

6) In the opposite figure :

ABCDis aquadrilat eral drawn in the circle \mathbf{N}, if $\mathbf{m}(\angle B N D)=130^{\circ}$ thenm $(\angle$ BAD $)=\ldots$.

$$
(50,130,65,115)
$$

[136]

a) In the opposite figure: $\overrightarrow{\mathbf{A X}}$ is a tangent in the circle: $\overline{\mathbf{D E}} / / \overline{\mathbf{B C}}$ prove that : $\overrightarrow{\mathbf{A X}}$ is a tangent to the circle passing through the points A, D, E
b) In the opposite figure :

ABCDis a cyclic quadrilateral $\mathrm{m}(\angle \mathrm{ABC})=70^{\circ}$, lengthof AD
$=$ length of DC find $\mathrm{m}(\angle \mathrm{ACD})$
[137]

a) In the opposite figure: $\overleftrightarrow{\mathbf{A X}}$ is a tangent to the circle at $\mathrm{A}, \mathbf{m}(\angle \mathrm{XAB})=40^{\circ} \mathbf{m}(\angle \mathrm{ABC})=110^{\circ}$ find m ($\angle \mathrm{CDB}$)
b) In the opposite figure :
$\overrightarrow{\mathbf{A B}}, \overrightarrow{\mathbf{A C}}$ are two tangents of the circle M at Band C $\mathrm{m}(\angle \mathrm{BDC})=80^{\circ}$ find $\mathbf{m}(\angle \mathbf{A})$

[138]

a) In the opposite figure : If $\overline{X Y} / / \overline{\mathrm{CD}}$ prove that: ABXY is a cyclic quadrilateral
b) In the opposite figure :
$\overline{\mathbf{E D}} \perp \overline{\mathbf{B C}}$ prove that :
$\mathrm{m}(\angle \mathrm{CED})=\frac{1}{2} \mathrm{~m}(\mathrm{AC})$

Cryp2Day.com: مزيد مه المذكرات البطاهزة للطباعة

[139] Complete:

1) Measure of the angle of tangency equals measure of subtended by the same arc.
2) The centre of the inscribed circle of any triangle is point of intersection
3) Measure of a semi-circle =
4) In the opposite figure

ABCD is a parallelogram Where $A D=3 x+20$ $B C=5 x-8$ then the value of $x=$

5) The inscribed angles subtended by equal arcs are
6) In the opposite figure: Perimeter of the shape $\mathrm{ABCDE}=. \ldots \ldots \ldots \ldots . . \mathrm{Cm}$

[140] Choose:

1) In the opposite figure:

If $\mathbf{m}(\angle A)+\mathbf{m}(\angle C)=140^{\circ}$ $\mathbf{m}(\angle \mathbf{B})=\mathbf{m}(\angle \mathbf{D})$
then $\mathrm{m}(\angle \mathrm{D})=$

(50, 55, 110, 220)
2) The ratio between the measure of the central angle to the measure of the inscribed angle subtended by the same arc $=\ldots \ldots \ldots . \quad(3: 1,2: 1,1: 2,1: 1)$
3) In the opposite figure:
$\overline{A B}$ is a diameter in the circle M with radius length 4 cm ,

4) In the opposite figure:
$\overline{\mathbf{C B}}, \overline{\mathbf{C A}}$ are two tangents to the circle $M, C B=B A$ then $m(\angle \mathbf{C})=$ ($60,90,120$, otherwise)

5) Number of common tangents of two distant circles $=$ (1,2,3,4)
6) In the opposite figure:
$\mathrm{m}(\angle \mathrm{C})=58^{\circ}, \mathrm{m}(\angle \mathbf{A})=2 \mathrm{x}^{\circ}$ then the value of $x=$
($58,122,119,61$)

[141]

D
a) In the opposite figure:
$\overline{\mathbf{E D}} \perp \overline{\mathbf{B C}}$ prove that:
i) ABDE is a cyclic quadrilateral
ii) $m(\angle \mathrm{CED})=\frac{1}{2} \mathrm{~m}(\mathrm{AC})$

b) In the opposite figure: $\triangle \mathrm{ABC}$ drawn in the circle M
$D \in \overrightarrow{\mathbf{C B}}$ such that $\mathbf{m}(\angle \mathbf{A B D})=120^{\circ}$
if $\mathbf{m}(\angle B M C)=100^{\circ}$ find with proof $\mathbf{m}(\angle A C B)$

[142]

In the opposite figure :

$\overrightarrow{X Y}, \overrightarrow{X Z}$ are two tangentsof the circle at Y and Z, $m(\angle Y X Z)=80^{\circ}, m(\angle E D Z)=130^{\circ}$ Prove that :
a) $\mathbf{Z E}=\mathbf{Z Y}$
b) $\overline{\mathbf{X Z}} / / \overline{\mathrm{YE}}$

[143]

In the opposite figure : two circles intersected at B, C
 $A \in$ one of themdraw $\overleftrightarrow{\mathbf{A F}}$ tangent to it at A and draw $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ to cut the other circle at D, E prove that $\overleftrightarrow{\mathbf{A F}} / / \overline{\mathrm{DE}}$

[144] In the opposite figure:
M is the inscribed circle of $\triangle \mathrm{ABC}$
If $\mathrm{BE}=\mathbf{2} \mathrm{cm}, \mathrm{CE}=\mathbf{4} \mathbf{~ c m}$
And the perimeter of $\triangle \mathrm{ABC}$
$=22 \mathrm{~cm}$, calculate the
Length of $\overline{\mathrm{AD}}$

[145] In the opposite figure: If $\overline{\mathbf{X Y}} / / \overline{\mathbf{C D}}$
Prove that:
ABXY is a cyclic quadrilateral.
[146] In the opposite figure:

$\overline{\mathrm{AB}}$ is a diameter of the circle $\mathrm{M}, \overline{\mathrm{CD}}$ touches the circle at C and $\overline{\mathrm{DE}} \perp \overline{\mathrm{AB}}$, prove that : D

1) $A C E F$ is a cyclic quadrilateral
2) $\mathrm{DC}=\mathrm{DF}$

[147] In the opposite figure:

$\overline{\mathrm{AB}}$ is a diameter in the circle N
C and D are two po ints on the Circle where $\overline{\mathbf{A C}} / / \overline{\mathbf{N D}}$ and $\mathrm{m}(\angle \mathrm{BAC})=50^{\circ}$
Calculate : m($\angle \mathrm{BCD}$)

[148] In the opposite figure:
There are two concentric circles M Where A is a point on the great circle
Draw $\overrightarrow{\mathrm{AD}}$ as a tangent to the small Circle at D to cut the great circle

At B. draw AE as a tangent to the small circle at E to cut the great circle at C prove that: $\mathrm{DB}=\mathrm{EC}$ [149] In the opposite figure:
ABC is an inscribed triangle
In a circle and $\overleftrightarrow{\mathrm{DE}} / /$ the Tangent drawn to the
Circle at \mathbf{A} and cuts $\overline{\mathrm{AB}}$ At D and $\overline{A C}$ at E

Prove that:

The figure DBCE is a cyclic quadrilateral

[150] In the following figure:

A is a po int outside a circle, AB is drawn to cut the Circle at B and C and $\overrightarrow{A D}$ is drawn to cut the circle at D And E if $\mathbf{m}(\angle E B C)=50^{\circ}$ and $\mathbf{m}(\angle D C B)=\mathbf{2 0}$

Calculate : m($\angle \mathrm{EAC}$)

[151] In the opposite figure:
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are Two tangents to The circle M At B and C and D $\mathbf{m}(\angle \mathrm{BDC})=80^{\circ}$ Find : m($\angle \mathrm{A})$

[152] In the opposite figure:

 The chords $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BE}}$ intersects At X, M is the centre of the Circle, $\mathrm{D} \in \quad$ draw $\overline{\mathrm{MB}}$ $\overline{\mathrm{MC}}$ and $\overline{\mathrm{AB}}$ if $\mathrm{m}(\angle \mathrm{BAC})=40^{\circ}$
Find:

1) $\mathbf{m}(\angle \mathrm{BEC})$
2) $\mathrm{m}(\angle \mathrm{BMC})$
3) $\mathrm{m}($ BDC $)$

[153] In the opposite figure:

$\Delta \mathrm{ABC}$ is inscribed in
A circle. $\overline{\mathrm{CD}}$ is a tangent To the circle at C draw $\overline{\mathrm{DE}} / / \overline{\mathrm{AC}}$ to cut $\overline{\mathrm{AB}}$ at E Prove that: BECD is a cyclic quadrilateral.

[154] In the opposite figure:

If $\overrightarrow{A D}$ is a tangent to the circle At A, $\mathbf{m}(\angle \mathrm{DAB})=140^{\circ}$ Find: m($\angle \mathrm{C})$

[155] In the opposite figure:

$\overline{A B}$ is a diameter in the circle M
And $E \in \overline{\mathbf{M A}}$ draw $\overrightarrow{\mathbf{E D}} \perp \overline{\mathbf{A B}}$ Where \mathbf{D} is outside the circle M $\overline{\mathrm{DB}}$ is drawn to cut the circle At C

Prove that:

The figure AECD is a cyclic Quadrilateral

[156]In the opposite figure
$\overline{\mathrm{XY}}$ is a diameter in the circle $\mathrm{M}, \mathrm{m}(\mathrm{XL})=\mathrm{m}(\mathrm{LZ})$ and $m(\angle Y)=60^{\circ}$, find $m(\angle L), m(\angle X Z Y)$ and $m(\angle L X Z)$

[157]In the opposite figure

If $\mathbf{A B}$ is a diameter and $\mathbf{m}(\angle \mathrm{BEC})=50^{\circ}$,
Then find
$\mathbf{m}(\angle \mathbf{B A C}), \mathbf{m}(\angle \mathrm{ABC})$ And $\mathbf{m}(\angle A D C)$
[158]In the opposite figure
The length of AB

$=$ the length of AD
$=$ the length of DC
And $m(\angle A D C)=80^{\circ}$
Find: m($\angle \mathrm{ABC})$ And m (BC)

[159]In the opposite figure

ABCD is a rectangle inscribed In a circle and $\mathrm{DE}=\mathrm{DC}$ Prove that: $\mathrm{AD}=\mathrm{BE}$

[160]In the opposite figure
$\overrightarrow{\mathbf{B D}} \cap \overrightarrow{\mathbf{A E}}=\{\mathbf{C}\}$, $\mathrm{m}(\angle \mathrm{AMB})=120^{\circ}$
An
$\mathrm{m}(\angle \mathrm{DAC})=20^{\circ}$
Find: $\mathbf{m}(\angle \mathrm{C})$

[161]In the opposite figure

$\mathbf{m}(\angle \mathrm{MBC})=100^{\circ}$ and
$\mathbf{m}(\angle \mathrm{ABD})=130^{\circ}$
Find: m($\angle \mathrm{DCB})$

[162]In the opposite figure

$\overrightarrow{\mathrm{AB}}$ And $\overrightarrow{\mathrm{AC}}$ are two tangents to a circle at B and C $\mathrm{m}(\angle \mathrm{BAC})=40^{\circ}$ and $\mathrm{m}(\angle \mathrm{CDE})=110^{\circ}$
Prove that 1) $\mathbf{C B}=\mathbf{C E} 2) \overline{\mathrm{BE}} / / \overline{\mathrm{AC}}$

[163]In the opposite figure

$\overline{\mathrm{AB}}_{\text {And }} \overline{\mathrm{AC}}$ are two tangents to a circle at B and $^{\text {and }}$
$\mathbf{C} \mathbf{m}(\angle A)=50^{\circ}$ and $\mathrm{m}(\angle C X Y)=115^{\circ}$ Pr ove that

1) $\overrightarrow{\mathbf{B C}}$ bi sects $\angle A B Y$
2) $\mathbf{C B}=\mathbf{C Y}$

[164]In the opposite figure

$\overrightarrow{\mathbf{A B}}$ And $\overrightarrow{\mathbf{A C}}$ are two tangents to the circle at B and C
$\overrightarrow{\mathrm{AC}} / / \overline{\mathrm{BD}}$ and $\mathrm{m}(\angle \mathrm{A})=40^{\circ}$ 1)Find $\mathrm{m}(\angle \mathrm{ACB})$, $m(\angle E C D)$ 2) Prove that,$C B=C D$

[165] In the opposite figure

$\mathrm{m}(\angle \mathrm{BCE})=60^{\circ}$
$\overline{\mathbf{B C}} / / \overline{\mathbf{M D}}$
And A is the
midpoint of BD
the major
Prove that

1) The figure BMDC is
A rhombus

2) $\overline{\mathrm{AC}}$ is a diameter of the circle

[166]In the opposite figure

$\overline{\mathrm{AB}}$ Is a diameter
circle $\mathrm{M}, \overleftrightarrow{\mathrm{DE}}$ is a tangent to it at C ,
$\overline{\mathbf{A B}} / / \overleftrightarrow{\mathrm{DE}}, \mathrm{X}$ is the
midpoint of $A C$ and $m(C X)=2 m(C Y)$
Find The measure of

the angles of the triangle MDE

[167]In the opposite figure

$\overline{\mathrm{CD}}$ Is a chord of the circle M, X is the midpoint of $\overline{\mathbf{C D}}$ and $\mathrm{E} \in \overline{\mathbf{C X}}$
Prove that

1) EFBX is a cyclic quadrilateral
2)

$$
\mathbf{m}(\angle \mathrm{AEX})=\mathbf{m}(\angle \mathrm{ADF})
$$

[168] in the opposite figure

BE Is a diameter of the circle M, D is the
midpoint of $\overline{\mathrm{AB}}$ and
$\overrightarrow{\mathrm{FE}}$ is a tangent to the circle M at E
Prove that

1) FDME is a cyclic quadrilateral
2) $\mathrm{m}(\angle \mathrm{F})=2 \mathrm{~m}(\angle \mathrm{CBE})$
[169] In the opposite figure:

ABC is inscribed triangle in a circle,

$\overline{\mathbf{A X}} \perp \overline{\mathbf{A B}}$ Cuts it at D and $\overline{\mathbf{C Y}} \perp \overline{\mathbf{A B}}$

Cutsit at E
Prove that:

$\overline{\mathbf{X Y}} / / \overline{\mathrm{DE}}$

[170]In the opposite figure:
$\mathbf{m}(\mathbf{A B})=\mathbf{m}(\mathbf{B C})$
Prove that:

1) The figure EXYD is

A cyclic quadrilateral
2) $\mathbf{m}(\angle \mathbf{C A D})=\mathbf{m}(\angle \mathbf{Y X D})$
[171] $\overline{\mathrm{AB}}, \overline{\mathrm{CD}}$ Are chords in

A circle $\mathbf{M}, \mathbf{A B}=\mathbf{C D} \overline{\mathbf{A D}} \cap \overline{\mathbf{B C}}=\{\mathbf{H}\}$,

Prove that:

1) $\mathbf{m}(\angle \mathrm{CAD})=\mathbf{m}(\angle \mathrm{BDA})$
2) AHMB is a cyclic quad.

[172]In the opposite figure:

AB is a diameter of a circle with
Centre $\mathrm{N}, \overrightarrow{\mathbf{C B}}$ is
a tangent to the circle at $B, \overrightarrow{\mathrm{CN}}$ Cuts the circle at F and E and
$\overrightarrow{\mathrm{AF}}$ Cuts $\overrightarrow{\mathbf{C B}}$
at D If $\mathbf{m}(\angle \mathbf{E})=\mathbf{3 5}$
Find:

1) $\mathrm{m}(\angle 1)$
2) $\mathrm{m}(\angle 2)$
3) $\mathrm{m}(\angle 3)$

[173] In the opposite figure

ABCD is a cyclic quadrilateral
$\overline{\mathrm{AX}}$ bisects $\angle \mathrm{BAC}, \overline{\mathrm{DY}}$ bi sects $\angle \mathrm{BDC}$ Prove that:

1) $A X Y D$ is a cyclic quad.
2) $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$

[174] In the opposite figure

$\overrightarrow{\mathrm{AB}}$ is a tangent to the circle $m(\mathrm{AH})=m(\mathbf{H O})$
$\overrightarrow{\mathbf{A H}} \cap \overrightarrow{\mathbf{D O}}=\{\mathbf{C}\}$
Prove that :

1) ABCD is a cyclic quad.

2) $\overleftrightarrow{B C}$ is a tangent to the

Circumference of $\Delta \mathrm{DHC}$

[175] In the opposite figure

$\overrightarrow{\mathrm{AH}} / / \overline{\mathrm{DB}}, \mathrm{m}(\angle \mathrm{BAH})=55^{\circ} \mathrm{m}(\angle \mathrm{C})=110^{\circ}, \mathrm{AB}=\mathrm{AD}$ Prove that :1) ABCD is a cyclic quad.

[176] In the opposite figure

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two
Tangent - segments to
A circle $\mathrm{M}, \overline{\mathrm{CD}}$ is a diameter in it $\mathbf{m}(\angle \mathrm{ABD})=140^{\circ}$
Find: 1) $\mathbf{m}(\angle$ BAC $) ~ 2) ~ m(~ \angle B D C) ~$
[177] In the opposite figure \mathbf{M} is a circle, $\overline{\mathrm{AB}} \cap \overline{\mathrm{DC}}=\{\mathrm{E}\}$ $\mathrm{m}(\angle \mathrm{AED})=50^{\circ}$ and $\mathrm{m}(\mathrm{AD})=\mathbf{3 0 ^ { \circ }}$ Find:1) $m(C B)$
2) $\mathrm{m}(\angle \mathrm{F})$
[178] In the opposite figure

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ touch the Circle at B and Cand $\overrightarrow{\mathbf{A B}} \cap \overrightarrow{\mathbf{A C}}=\{\mathbf{D}\}$ If C is the
Midpo int of $\overline{\mathrm{AD}}$ Prove that: $\Delta \mathrm{ABC}$ is equilateral.

[179] In the opposite figure

M and \mathbf{N} are two circles touching externally at
$A, \overleftrightarrow{A B}$ cuts the circle M at B and the circle N at C

Pr ove that: $\overline{\mathrm{MB}} / / \overline{\mathrm{NC}}$

[180] In the opposite figure
BCHD is a cyclic quadriateral
$\overrightarrow{\mathbf{D H}} \cap \overrightarrow{\mathbf{B C}}=\{\mathbf{A}\}$
$\overrightarrow{\mathbf{A X}} / / \overline{\mathbf{C H}}$
Prove that:
$\overleftrightarrow{A X}$ is a tangent to

The circle pas sing through the vertices of the triangle ABD

[181] In the opposite figure

ABCD is a paralle log ram

1) Pr ove that : $\mathrm{AD}=\mathrm{ED}$
2) If $\mathbf{m}(\angle B)=110^{\circ}$

Find: m($\angle \mathrm{ADE})$

[182] In the opposite figure

ABC is an equilateral triangle
Inscribed in a circle $\mathbf{D} \in \mathrm{AB}$
The point $E \in D C$
Where AD = DE
Prove that :

1) $\triangle \mathrm{ADE}$ is an equilateral triangle

2) $\mathrm{DB}=\mathrm{CE}$
[183] In the opposite figure ABCD is a cyclic quadrilateral $F \in \overrightarrow{D C}$ and $\overrightarrow{A E}$ bi sects $\angle B A D$ Pr ove that:
$\overrightarrow{\mathbf{C E}}$ bi sects $\angle \mathrm{BCF}$

[184] In the opposite figure

ABC is an acute - angled triangle Inscribed in a circle. draw
$\overrightarrow{\mathbf{C F}} \perp \overline{\mathrm{AB}}$ to cut $\overline{\mathrm{AB}}$ at F
Pr ove that :

1) AFDC is a cyclic quadrilateral
2) $\mathbf{m}(\angle \mathrm{BFD})=\mathbf{m}(\angle \mathrm{BED})$

[185] In the opposite figure Circle $M \cap$ circle $\mathbf{N}=\{\mathbf{A}, \mathrm{B}\}$
$\mathbf{C} \in \overrightarrow{\mathbf{B A}}$ and $\mathbf{C} \notin \overline{\mathbf{B A}}$ draw $\overrightarrow{\mathbf{C X}}$ to cut circle M at X And Y if D is the Midpo int of $\overline{X Y}$ and $\overline{\mathbf{A B}} \cap \overline{\mathbf{M N}}=\{\mathbf{Z}\}$

Pr ove that : CDMZ is a cyclic quadrilateral.

[186] In the opposite figure

 $\overline{\mathrm{BC}}$ is a diameter of a circle $\overline{\mathrm{BD}}$ and $\overline{\mathrm{BE}}$ are two chords of It and on one side of $\overline{B C}$, from C a tangent is drawn to the circle Cutting $\overrightarrow{\mathbf{B D}}$ at X and $\overrightarrow{\mathbf{B E}}$ at Y Pr ove that :DEYX is a cyclic quadrilateral.

[187] In the opposite figure
$\overline{\mathrm{AB}}$ is a diameter of a circle $\overrightarrow{D B}$ and $\overrightarrow{D C}$ are tangents to the circle at B and C prove that
: \mathbf{D} is the midpoint of $\overline{\mathrm{BE}}$

[188] In the following figure:

ABCD is a quadrilate ral inscribed in a circle with centreN. $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
Find the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ If $\mathrm{m}(\angle \mathrm{ACD})=\mathbf{2 6}{ }^{\circ}$

[189] In the following figure:

ABCD is a quadrilate ral inscribed in a circle with centreN. $\overline{\mathbf{A B}} / / \overline{\mathbf{C D}}$ Find the values of $\mathbf{x}, \mathbf{y}, \mathrm{z}$ If $\mathbf{m}(\angle \mathrm{DNA})=\mathbf{5 0}{ }^{\circ}$

[190] In the following figure:

 ABCD is a quadrilate ral inscribed in a circle with centre $\mathrm{N} . \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$ Find the values of $\mathbf{x}, \mathbf{y}, \mathbf{z}$ If $\mathbf{m}(\angle \mathrm{DNA})=\mathbf{7 0}{ }^{\circ}$

[191] In the following figure: ABCD is a cyclic quadrilateral

 in which $\mathrm{AB}=\mathrm{AD}, \mathrm{m}(\angle \mathrm{BDC})=41^{\circ}$ find the value of each of x, y and z

[192] In the following figure:

 ABCD is a cyclic quadrilate ral in a circle with centre $\mathrm{N}, \mathrm{CB}=\mathbf{C D}$ $\mathrm{m}(\angle \mathrm{C})=15 \mathbf{0}^{\circ}$. Find $\mathrm{m}(\angle \mathrm{A}), \mathrm{m}(\angle \mathrm{B})$ and $m(\angle D)$

[193] In the following figure:

 ABCD is a cyclic quadrilate ral find the measuresof the angles labled by the sign (?)

[194] In the following figure:

ABCD is a cyclic quadrilate ral D
find the measuresof the angles
labled by the sign (?)

[195] In the following figure:

ABCD is a cyclic quadrilate ral find the measuresof the angles labled by the sign (?)

[196] In the following figure:

$A B C D$ is a cyclic quadrilate ral
find the measuresof the angles labled by the sign (?)

[197] In the following figure:

$\overline{\mathrm{AB}}$ is a diameter of the circle $m(\overparen{B C})=m(\overparen{B D}), \overrightarrow{\mathrm{DE}}$ touches the circle at D and intersect $\overrightarrow{A B}$ at E. if $\overrightarrow{\mathbf{D B}} \cap \overrightarrow{\mathbf{A C}}=\{\mathbf{F}\}$ prove that:
a) ADEF is a cyclic quadrilateral
b) $\overline{\mathrm{FE}} \perp \overline{\mathrm{AE}}$
c) CBEF is a cyclic quadrilateral

[198] In the following figure:
Two circlers \mathbf{N}, \mathbf{M} touch internally at $\mathbf{A}, \overline{B C}$ is a chord of the larger circle and touches the smaller circle at Z where $Z \in \overline{\mathbf{A N}}, \overline{\mathbf{A B}}$ intersects the smaller circle at D and intersects it at E prove that:
a) $\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$
b) $\mathbf{A B}=\mathbf{A C}$

[199] In the opposite figure:

Two circles touch internally at A
$\overrightarrow{\mathbf{B A}}, \overrightarrow{\mathbf{B C}}$ touch the smallercircle at $\mathrm{A}, \mathrm{C} \cdot \overrightarrow{\mathrm{AC}}$ cuts the larger circle at D and $\overline{\mathrm{DB}}$ cuts the larger circle at E. Prove that ABEC is a cyclic quadrilateral

[200] In the opposite figure:

ABCD is a quadrilate ral inscribed in a circle with centre $\mathrm{N}, \overline{\mathbf{N D}} / / \overline{\mathrm{BC}}$ if $\mathrm{m}(\angle \mathrm{BCX})=60^{\circ}, \mathrm{m}(\angle \mathrm{NBA})=40^{\circ}$ Prove that NDCB is a rhombus thenfind m($\angle \mathrm{ADN}$)

[201] In the opposite figure:

 Two circles have the same centreM $\mathrm{A} \in$ the larger circle. $\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ touch thesmallercircle at \mathbf{D}, \mathbf{E} Prove that $\mathrm{AB}=\mathrm{AC}$

[202] In the opposite figure:

N is the centre of the circle
$\overline{\mathrm{AD}}$ is a diameter of it. $\overline{\mathrm{BC}}$ is a tangent-segment.
find the value of each 1 and 2

[203] In the opposite figure:

N is the centre of the circle
$\overline{\mathrm{AD}}$ is a diameter of it. $\overline{\mathrm{BC}}$ is a tangent-segment.
find the value of each 1 and 2

[204]

In each of the the following figures
$\overrightarrow{\mathbf{D B}}, \overrightarrow{\mathbf{D C}}$ are two tangentsto the circle.find the value of each of 1,2 and 3

[205] In the opposite figure:
Prove that:
$\mathbf{m}(\angle \mathbf{1})=\mathbf{m}(\angle \mathbf{2})$

[206] In the opposite figure: $\mathrm{AC}=\mathrm{AX}, \mathrm{m}(\angle 4)=\mathrm{m}(\angle 5)$
Prove that:
BXYZ is a cyclic quadrilateral

Cryp2Day.com: مزيد مه المذكرات الباهزة للطباعة
[207] In the opposite figure:
D is the midpoint of $B C$,
$\overline{\mathbf{M D}} \cap \overline{\mathbf{B H}}=\{\mathbf{O}\}$
Prove that : MCHO is a cyclic quadrilateral

[208] In the opposite figure:
A is a point outside a circle. $\overrightarrow{\mathrm{AB}}$ is
Drawn to cut the circle at B and C
$\overrightarrow{\mathrm{AD}}$ is drawn to cut the circle at
D and E if $\mathbf{m}(\angle E B C)=50^{\circ}$ and $\mathrm{m}(\angle \mathrm{DCB})=20^{\circ}$
Calculate: $\mathbf{m}(\angle \mathrm{EAC})$

[209] ABC is an acute-angled triangle. The squares ABDE and BCYX Are drawn outside $\triangle \mathrm{ABC}$ if $\overline{\mathrm{AX}}$ And $\overline{\mathrm{CD}}$ are intersecting at F , Prove that:

1) ADBF is a cyclic Quadrilateral.
2) $\overline{\mathbf{A X}} \perp \overline{\mathbf{C D}}$
3) $\overrightarrow{\mathrm{FB}}$ bi sects $\angle \mathbf{X F D}$

[210] ABCD is a square., X, Y And Z are the midpoints of $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{AD}}$ Respectively. If $\overline{\mathbf{A Y}}$, and $\overline{\mathrm{DX}}$ intersect at E, Prove that: the figure EYDZ is A cyclic quadrilateral.

[211] $\overline{\mathrm{AB}}, \overline{\mathrm{CD}}$ Are chords in A circle $M, A B=C D$ $\overline{\mathbf{A D}} \cap \overline{\mathbf{B C}}=\{\mathbf{H}\}$,
Prove that:
4) $\mathbf{m}(\angle \mathrm{CAD})=\mathbf{m}(\angle \mathrm{BDA})$
5) AHMB is a cyclic quad.

[212]In the opposite figure:
$\overline{\mathrm{AB}}$ is a diameter of a circle with
Centre $N, \overrightarrow{C B}$ is a tangent to the circle at B,
$\overrightarrow{\mathrm{CN}}$ cuts the circle at F and E and
$\overrightarrow{\mathrm{AF}}$ cuts $\overrightarrow{\mathbf{C B}}$ at D If
$\mathrm{m}(\angle \mathrm{E})=35^{\circ}$

Find:

1) $\mathrm{m}(\angle 1)$
2) $m(\angle 2)$
3) $\mathrm{m}(\angle 3)$

[213] In the opposite figure: $\mathbf{m}(\mathbf{A C})=\mathbf{m}(\mathbf{H C})$,
$\overline{\mathbf{D C}} \perp \overline{\mathbf{A B}}$
Prove that :
OCXY is a cyclic quadrilateral

[214] In the opposite figure: Prove that:
4) OBCX is a cyclic quadrilateral
5) OXHD is a cyclic quadrilateral
[215] In the opposite figure:

Cryp2Day.com: كزبد مه المذكرات الباهزة اللطباعة
[216] In the opposite figure: Prove that:
XYZZ is a cyclic quadrilateral
[217] In the opposite figure:
$\overline{\mathrm{MA}}, \overline{\mathrm{MB}}$ are two tangentsto the circle N ,
$\overline{\mathrm{NC}}, \overline{\mathrm{ND}}$ are two tangentsto the circle M
Prove that: $\mathrm{FD}=\mathrm{EC}$

Proof:

$\triangle \mathrm{MNB} \equiv \triangle \mathrm{MAN}$?
Then $m(\angle 1)=m(\angle 2)$
$\Delta \mathrm{NMD} \equiv \Delta \mathrm{NMC}$?
Then $m(\angle 2)+m(\angle 3)=m(\angle 1)+m(\angle 4)$
From (I) and (I)
$\therefore \mathrm{m}(\angle 3)=\mathrm{m}(\angle 4)$
$\therefore \Delta \mathrm{MDF} \equiv \Delta \mathrm{MCE}$?
$\therefore \mathrm{DF}=\mathrm{CE}$
[218] In the opposite figure: with centre M and radius 4.5 cm . long at the point

B if $\mathbf{m}(\angle \mathrm{CMD})=\mathbf{1 2 0}{ }^{\circ}$
and $m(\angle B C D)=50^{\circ}$
Calculate :

1) $\mathrm{m}(\mathrm{BCD})$
2) The length of (BCD)

Cairo 2010

[1] Complete:

\author{

1) Twice
}
2) $\mathrm{m}(\mathrm{CH})-\mathrm{m}(\mathrm{BD})$
3) Equal in measure
[2] Choose:
4) $\mathrm{S}=\frac{\mathrm{P}}{4}=20 \div 4=5 \mathrm{~cm}, \mathrm{~A}=\mathrm{S}^{2}=5^{2}=25$
5) 90°
6) 2
7) $\frac{90}{360}=\frac{1}{4}$
8) The bisectors of its interior angles
9) $\mathbf{m}(\mathrm{AB})=2 \times 60=120^{\circ}$

Then $m(A X B)=360^{\circ}-120^{\circ}=240^{\circ}$
[3] a)
$\mathrm{m}(\angle \mathrm{DAB})=\mathbf{m}(\angle \mathbf{1})=20^{\circ}$
(Subtended by DB)
$\because \overline{\mathbf{A B}}$ is a diameter
$\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
$\mathrm{m}(\angle \mathrm{ACD})=90^{\circ}+\mathbf{2 0 ^ { \circ }}=110^{\circ}$

Cryp2Day.com: كزبد مه المذكرات الباهزة اللطباعة
$\because C D=C A$
$\therefore \mathrm{m}(\angle 3)=\mathrm{m}(\angle 2)=\frac{180^{\circ}-110^{\circ}}{2}=35^{\circ}$
In $\Delta \mathrm{CDH}, \mathrm{m}(\angle 4)=180^{\circ}-\left(20^{\circ}+35^{\circ}\right)$

$$
=180^{\circ}-55^{\circ}=125^{\circ}
$$

$m(\angle \mathrm{AHB})=m(\angle 4)=125^{\circ}$
(V.O.A)
b)
$m(C B)=\frac{5}{18} \times 360^{\circ}=100^{\circ}$
$\therefore \mathrm{m}(\mathrm{AB})=\mathrm{m}(\mathrm{AC})=\frac{\mathbf{3 6 0}^{\circ}-100^{\circ}}{2}$

$$
=\mathbf{1 3 0}^{\circ}
$$

[4] a)

$\because \mathrm{HBCD}$ is a cyclic quad.
$\therefore \mathrm{m}(\angle \mathrm{C})=180^{\circ}-110^{\circ}=70^{\circ}$
$\because \mathrm{ABCD}$ is a parallelogram
$\therefore \mathbf{m}(\angle C)=\mathbf{m}(\angle A)=70^{\circ}$
b)
$\because \mathbf{A D}=\mathbf{D C} \quad \therefore \overline{\mathrm{MD}} \perp \overline{\mathbf{A C}}$
$\because \overline{\mathrm{AB}}$ is a diameter $\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
$\because \overline{B H}$ is a tangent
$\therefore \mathrm{m}(\angle \mathrm{HBA})=90^{\circ}$
$\mathrm{m}(\angle \mathrm{B})+\mathrm{m}(\angle \mathrm{D})=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore MBHD is a cyclic quad.
$\because \mathbf{m}(\angle B C A)+\mathbf{m}(\angle D)$

$$
=90^{\circ}+90^{\circ}=180^{\circ}
$$

$\therefore \overline{\mathrm{MD}} / / \overline{\mathrm{BC}}$

[5] a)

$\overleftrightarrow{\mathbf{X C}} / / \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\angle \mathrm{CXZ})=\mathbf{m}(\angle \mathrm{ABX}) \ldots .$. (1) (Alt.)
$\because \overleftrightarrow{X C}$ is a tangent to the circle at X
$\therefore \mathrm{m}(\angle \mathbf{C X Z})=\mathbf{m}(\angle Y)$
From (1) and (2)
$\therefore \mathbf{m}(\angle \mathbf{A B X})=\mathbf{m}(\angle \mathbf{Y}) \quad$ (Exterior)
\therefore ABZY is a cyclic quad.
b)
$\because m(\angle B A H)+m(\angle D A B)=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BAH})=180^{\circ}-120^{\circ}=60^{\circ}$
$\because \overleftrightarrow{\mathbf{D H}}$ is a tangent
$\therefore \mathbf{m}(\angle A C B)=\mathbf{m}(\angle B A H)=60^{\circ}$ Subtended by BC

مساف大巨ة المنوفبفة

[1] Choose

2) All the following figures are cyclic quadrilateral except
(Rectangle, square , isosceles trapezium , rhombus)
3) If ABCD is a cyclic quad.,
$\mathbf{m}(\angle A)=\mathbf{2} \mathbf{m}(\angle C)$ then $\mathbf{m}(\angle A)=\ldots \ldots$.
$\left(120,60^{\circ}, 45^{\circ}, 180^{\circ}\right)$
[2] Complete:
4) In the opposite figure

Area of the shaded part
: Area of all figure

=
[5]
Find : 1) m($\angle \mathrm{ADC})$
3) Prove that
$\overline{\mathrm{AC}}$ is a tangent of the

2) $m(\angle A X B)$

مهح

[1] Choose:

4) In $\triangle \mathrm{ABC}, \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$

Then $\angle \mathrm{C}$ is angle.
(Acute, Right, Obtuse, Straight)
5) In the opposite figure
$\mathrm{m}(\angle \mathrm{AMB})=60^{\circ}, \mathrm{AB}=\mathbf{8} \mathbf{~ c m}$
Then the length of the radius $=\ldots \mathrm{cm}$ ($8,4,16,12$)

كatax

[1] Choose:

1) Number of common tangent of two distant

$$
\text { circles }=\ldots . .(1,2,3,4)
$$

5) AB is a diameter in the circle,
$\mathbf{r}=\mathbf{4 c m}, \mathrm{m}(\angle \mathrm{A})=30^{\circ}, \mathrm{BC}=$ (4,2,6,3)
6) The ratio between the measure of the inscribed angle to the measure of the central angle subtended by the same arc is...... (3:1,1:3,2:1,1:2)

[2] Complete:

4) If ABCD is a cyclic quad. , $\mathbf{m}(\angle A)=\mathbf{3} \mathbf{m}(\angle C)$ then $\mathbf{m}(\angle A)=\ldots . . .$.
5) If half the surface area of a square is $\mathbf{3 2} \mathrm{cm}^{2}$ then its side length $=. \mathrm{cm}$

[3] b)In the opposite figure:

$\overrightarrow{\mathrm{AD}}$ is a tangent to the circle M $\mathrm{m}(\angle \mathrm{C})=\mathbf{5 0}{ }^{\circ}$ Find : m(\angle BAM)

[4] In the opposite figure:

DC = CB Prove that:

1) $\overrightarrow{\mathbf{B C}}$ bisect \angle DBA
2) $\overline{\mathrm{CD}}$ is a tangent to the circumcircle of $\Delta \mathrm{ABC}$

Cases for a quadrilateral to be cyclic

A quadrilateral is cyclic if there exist(s):

1) A point in the same plane equidistant from its four vertices.
2) Two angles equal in measure drawn on one of its sides as abase
3) Two opposite angles being supplementary.
4) An exterior angle at one of its vertices equals in measure the interior angle opposite to this vertex.

هن الملزمهة غَبر (المحولةٌ

مسألة أــ إ

[85] In the opposite figure

$\overline{\mathbf{B C}}$ is a diameter of a circle $\overline{\overline{\mathbf{B D}}}$ and $\overline{\mathrm{BE}}$ are two chords of
It and on one side of $\overline{\mathbf{B C}}$, from \mathbf{C} a tangent is drawn to the circle Cutting $\overrightarrow{\mathrm{BD}}$ at \mathbf{X} and $\overrightarrow{\mathbf{B E}}$ at \mathbf{Y}

Prove that : DEYX is a cyclic quadrilateral.

حل ثان لها وأسهل

Solution:

$$
\begin{equation*}
\because \mathrm{m}(\angle 1)=\mathrm{m}(\angle 2) \tag{1}
\end{equation*}
$$

Subtended by BD

$\because \overline{\mathrm{XY}}$ is a tangent
$\therefore \mathrm{m}(\angle 2)+\mathrm{m}(\angle 3)=90^{\circ}$
$\because \overline{\mathbf{C B}}$ is a diameter
$\therefore \mathrm{m}(\angle \mathrm{BDC})=90^{\circ} \quad \therefore \mathrm{m}(\angle \mathrm{YDC})=90^{\circ}$
$\therefore \mathrm{m}(\angle 3)+\mathrm{m}(\angle 4)=90^{\circ}$
From (2) and (3)
$\therefore \mathrm{m}(\angle 2)=\mathrm{m}(\angle 4)$
From (1) and (4)
$\therefore \mathrm{m}(\angle \mathbf{1})=\mathrm{m}(\angle 4)$
\therefore DEYX is a cyclic

[21] In the opposite figure:

$\overleftrightarrow{\mathbf{X Y}}$ is a tangent to the circle
N at D and parallel to
The chord AB if
$\mathrm{m}(\angle \mathrm{ANB})=148^{\circ}$
Find $\mathbf{m}(\angle \mathrm{BCD})$

Solution:

$\because \overleftrightarrow{\mathbf{X Y}}$ is a tangent, $\overleftrightarrow{\mathbf{X Y}} / / \overline{\mathbf{A B}}$
$\therefore \mathrm{m}(\mathrm{AD})=\mathrm{m}(\mathrm{BD})=148^{\circ} \div \mathbf{2}=\mathbf{7 4}{ }^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{BCD})=\frac{1}{2} \mathrm{~m}(\mathrm{BD})=74 \div 2=37^{\circ}$

[28] In the opposite figure:

ABCD is a quadrilateral
Inscribed in a circle in
Which $A B=A D$ and
$\mathbf{m}(\angle \mathrm{C})=\mathbf{1 1 0}^{\circ}$,
$\mathrm{m}(\angle \mathrm{ADX})=55^{\circ}$
Pr ove that : $\overrightarrow{\mathbf{D X}}$ is a tangent
To the circle

Solution:

\because ABCD is a cyclic quad.

$\therefore \mathrm{m}(\angle \mathrm{A})=180^{\circ}-110^{\circ}=70^{\circ}$
$\because \mathrm{AB}=\mathrm{AD} \quad \therefore \mathrm{m}(\angle 1)=\mathbf{m}(\angle 2)=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
$\therefore \mathbf{m}(\angle \mathrm{ADX})=\mathbf{m}(\angle \mathbf{1})=\mathbf{5 5 ^ { \circ }} \quad \therefore \overrightarrow{\mathbf{D X}}$ is a tangent to the circle

[34] In the following figure:

$\overline{\mathrm{AB}}$ is a diameter in the circle $\mathrm{M} . \mathrm{D}$ is the midpo int of
$\overline{\mathrm{AC}}$ and $\overrightarrow{\mathrm{BE}}$ is a tangent to the circle to cut $\overrightarrow{\mathbf{D M}}$ at E Prove that: 1) the figure ADBE is a cyclic quadrilateral 2) $\mathbf{m}(\angle \mathbf{C M B})=\mathbf{m}(\angle \mathbf{B E D})$

Solution:

$\because \overrightarrow{\mathbf{B E}}$ is a tangent
$\therefore \mathrm{m}(\angle \mathrm{ABE})=\mathbf{9 0} 0^{\circ}$
$\because \mathrm{AD}=\mathrm{DC}$
$\therefore \mathrm{m}(\angle \mathrm{MDC})=90^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{ABE})=\mathbf{m}(\angle \mathrm{ADE})=90^{\circ}$
Drawn on $\overline{\mathrm{AE}}$ and in one side of it
\therefore ADBE is a cyclic quad.

$\therefore \mathrm{m}(\angle 1)=\mathbf{2 m}(\angle 2) \quad \mathrm{BC}$
$\because \mathrm{m}(\angle 2)=\mathrm{m}(\angle 3) \quad \overline{\mathrm{DB}}$
$\therefore \mathrm{m}(\angle 1)=\mathbf{2 m}(\angle 3)$

[3] In the opposite figure:

LYZ is a triangle inscribed in a circle,$\overleftrightarrow{X Y}$ is
a tangent to the circle at Y and $\overline{\mathbf{F E}} / / / \overline{\mathrm{LY}}$
Prove that:

1) $m(\angle E Y Z)=m(\angle E F Z)$
2) The figure EYFZ is

A cyclic quadrilateral

Proof:

$\because \overrightarrow{A X}$ is a tangent
$\therefore \mathrm{m}(\angle \mathbf{1})=\mathrm{m}(\angle \mathbf{3}) \quad(\mathrm{I})$
Subtended by the same arc
$\because \overline{\mathrm{FE}} / / \overline{\mathrm{LY}}, \overline{\mathrm{LZ}}$ is a transversal
$\therefore \mathbf{m}(\angle 2)=\mathbf{m}(\angle 3) \quad$..... (II)
Corresponding angles
From (I) and (II)
$\therefore \mathrm{m}(\angle \mathbf{1})=\mathrm{m}(\angle \mathbf{2})$
Drawn on $\overline{\mathbf{Z E}}$ and in one side of it
\therefore EYFZ is a cyclic

[4] in the opposite figure

BE Is a diameter of the circle F
M, D is the midpoint of $\overline{\mathrm{AB}}$
and $\overrightarrow{\mathrm{FE}}$ is a tangent to the circle M at E
Prove that

1) FDME is a cyclic quadrilateral
2) $\mathrm{m}(\angle \mathrm{F})=2 \mathrm{~m}(\angle \mathrm{CBE})$

Proof:

$\because \mathrm{AD}=\mathrm{DB} \quad \therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}} \because \overrightarrow{\mathrm{FE}} \mid$ is a tanent $\therefore \overrightarrow{\mathrm{FE}} \perp \mathbf{\mathrm { BE }}$
In FDME
$\because m(\angle E)+m(\angle D)=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore FDME is a cyclic quadrilateral
$\therefore \mathbf{m}(\angle 2)=\mathbf{m}(\angle 3)$
(Exterior of FDME)
$\because \mathrm{m}(\angle 1)=\frac{1}{2} \mathrm{~m}(\angle 2)$
(Subtended by the same arc)
From (I) and (II)
$\therefore \mathbf{m}(\angle 3)=\mathbf{2} \mathbf{m}(\angle \mathbf{1})$
[5] In the opposite figure ABCD is a cyclic quadrilateral
$\overline{\mathbf{A X}}$ bisects $\angle \mathbf{B A C}, \overline{\mathbf{D Y}}$ bisects $\angle \mathrm{BDC}$ Prove that :

1) AXYD is a cyclic quad.
2) $\overline{X Y} / / \overline{B C}$

Proof:

$\because \mathrm{ABCD}$ is a cyclic
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{BDC})$
$\therefore \frac{1}{2} \mathrm{~m}(\angle \mathrm{BAC})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BDC})$
$\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle 3)$
(Drawn on $\overline{X Y}$ and in one side of it)
\therefore AXYD is a cyclic quadrilateral
$\therefore m(\angle 5)=m(\angle 7)$
$\because m(\angle 6)=m(\angle 7)$
(Subtended by the same arc)
From (I) and (II)
$\therefore \mathrm{m}(\angle 6)=\mathrm{m}(\angle 5)$ and they are corresponding angles
$\therefore \overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$

[6] In the opposite figure:

$A B$ is a diameter of the circle M

$\overline{\mathrm{CD}}$ touches the circle at C and $\overline{\mathrm{DE}} \perp \overline{\mathrm{AB}}$
Prove that:

1) ACEF is a cyclic quadrilateral
2) $\mathrm{DC}=\mathrm{DF}$

Proof:
$\because \overline{\mathrm{AB}}$ is a diameter
$\therefore \mathrm{m}(\angle \mathrm{ACB})=90^{\circ}$
$\because \overline{\mathbf{D E}} \perp \overline{\mathbf{A B}}$
From (I) and (II)
$\therefore \mathrm{m}(\angle 1)+\mathrm{m}(\angle 2)=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore AEFC is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathbf{3})=\mathbf{m}(\angle A)$
(exteriorangle)
$\because \overline{\mathrm{DC}}$ is a tangent
$\therefore m(\angle 4)=m(A)$
From (I) and (II)
$\therefore \mathrm{m}(\angle 3)=\mathrm{m}(\angle 4)$
$\therefore \mathrm{DC}=\mathrm{DF}$

[7] In the opposite figure:

$\overline{\mathrm{XY}}$ is a diameter in the circle \mathbf{N}
$\overline{\mathbf{X Z}}$ is a chord in it.draw $\overrightarrow{\mathbf{Y L}}$
A tangent to cut $\overrightarrow{X Z}$ at L
Pr ove that:
$\overleftrightarrow{X Y}$ is a tangent to the
Circumcircle of $\Delta \mathbf{Z Y L}$

Proof:

$\because \overline{\mathbf{L Y}}$ is a tangent
$\therefore \mathrm{m}(\angle \mathbf{1})+\mathrm{m}(\angle 2)=\mathbf{9 0}{ }^{\circ}$
$\because \overline{\mathbf{X Y}}$ is a diameter
$\therefore \mathrm{m}(\angle 3)=\mathrm{m}(\angle 4)=90^{\circ}$
$\therefore \mathrm{m}(\angle 2)+\mathrm{m}(\angle 5)=90^{\circ}$
From (I) and (II)
$\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle 5)$
$\therefore \overleftrightarrow{\mathbf{X Y}}$ is a tangent to the circumcircle of $\Delta \mathbf{Z Y L}$
[8] In the opposite figure ABCD is a cyclic quadrilateral
$F \in \overrightarrow{\mathrm{DC}}$ and $\overrightarrow{\mathrm{AE}}$ bi sects $\angle \mathrm{BAD}$ Pr ove that :
$\mathbf{C E}$ bi sects $\angle \mathrm{BCF}$

Proof:

\because AECD is a cyclic

$\therefore \mathrm{m}(\angle \mathbf{1})=\mathrm{m}(\angle 2)$....(I)
Exterior angle
$\because \mathbf{m}(\angle 3)=\mathbf{m}(\angle 4)$.....((II)
Subtended by the same arc
$\because \mathbf{m}(\angle \mathbf{2})=\mathbf{m}(\angle 4)$.....(III)
From (I), (II) and (III)
$\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle 3)$
\therefore CE bisects $\angle \mathbf{B C F}$

[115] In the opposite figure:

ABCD is a quadrilate ral inscribed in a circle with centre $\mathrm{N}, \overline{\mathbf{N D}} / / \overline{\mathrm{BC}}$ if $\mathbf{m}(\angle \mathrm{BCX})=60^{\circ}, \mathrm{m}(\angle \mathrm{NBA})=40^{\circ}$ Prove that NDCB is a rhombus thenfind m($\angle \mathrm{ADN}$)

Proof:

$\because \overline{\mathrm{ND}} / / \overline{\mathrm{BC}}$
$\therefore \mathrm{m}(\angle \mathrm{BCX})=\mathrm{m}(\angle 4)=60^{\circ}$
(Corresponding angles)
$\because \mathrm{m}(\angle 1)+\mathbf{m}(\angle \mathrm{BCX})=180^{\circ}$
$\therefore \mathrm{m}(\angle 1)=180^{\circ}-60^{\circ}=120^{\circ}$
$\because m(\angle 3)+m(\angle 1)=180^{\circ}$
$\therefore \mathrm{m}(\angle 3)=180^{\circ}-120^{\circ}=60^{\circ}$
$\therefore \mathrm{m}(\angle 2)=2 \times \mathrm{m}(\angle 3)=2 \times 60^{\circ}=120^{\circ}$
$\because m(\angle 4)+m(\angle 2)=60^{\circ}+120^{\circ}=180^{\circ}$
$\therefore \overline{\mathrm{NB}} / / \overline{\mathrm{DC}}$
$\because \overline{\mathbf{N D}} / / \overline{\mathbf{B C}}$
$\because \mathbf{N D}=\mathbf{N B}$

From (I), (II) and (III)

\therefore NBCD is a rhombus
$\because \mathrm{ABCD}$ is a cyclic quadrilate ral
$\therefore \mathrm{m}(\angle \mathrm{ABC})+\mathbf{m}(\angle \mathrm{ADC})=180^{\circ}$
$\therefore 40^{\circ}+60^{\circ}+60^{\circ}+\mathrm{m}(\angle 5)=180^{\circ}$
$\therefore \mathrm{m}(\angle 5)=180^{\circ}-\left(60^{\circ}+60^{\circ}+40^{\circ}\right)=20^{\circ}$

[112] In the opposite figure:

Two circles touch internally at A
$\overrightarrow{\mathbf{B A}}, \overrightarrow{\mathbf{B C}}$ touch the smallercircle
at $A, C \cdot \overrightarrow{A C}$ cuts the larger circle at D and $\overline{D B}$ cuts the larger circle at E. Prove that ABEC is a cyclic quadrilateral

Proof:

$\because \overrightarrow{\mathbf{B A}}, \overrightarrow{\mathbf{B C}}$ are two tangents
$\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle 2)+\mathrm{m}(\angle 3)$
$\because m(\angle 3)=m(\angle 4)$
(Subtended by the same are)
$\because \angle 1$ is exteriorof $\triangle \mathrm{DCB}$
$\therefore m(\angle 1)=m(\angle 4)+m(\angle 5)$
From (I), (II) and (III)
$\therefore m(\angle 2)=m(\angle 5)$
Drawn on $\overline{\mathrm{EC}}$ and in one side of it
\therefore ABEC is a cyclic quadrilateral

مـا

Model Answer

[1]

1) Inscribed
2) 8 cm
3) Supplementary
4) $\mathrm{W}=\frac{\mathrm{p}}{2}-\mathrm{L}=\frac{16}{2}-6=2 \quad \mathrm{~A}=6 \times 2=12 \mathrm{~cm}^{2}$
5) $\frac{2}{5} \times 360=144^{\circ}$
6) $4 x-5=3 x+1 \quad \therefore 4 x-3 x=1+5 \quad \therefore x=6$
[2]
7) $\frac{110^{\circ}-40^{\circ}}{2}=35^{\circ}$
8) 4
9) $\sqrt{5^{2}-3^{2}}=4 \mathrm{~cm}$
10) $\frac{90^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 7=11 \mathrm{~cm}$
11) $\mathrm{m}(\angle \mathrm{AMC})=180^{\circ}-\left(35^{\circ}+35^{\circ}\right)=110^{\circ}$
$\mathrm{m}(\angle \mathrm{ABC})=\frac{\mathbf{1}}{\mathbf{2}} \times 110^{\circ}=55^{\circ}$
12) $\mathrm{m}(\angle \mathrm{C})=\frac{1}{2} \times 130^{\circ}=65^{\circ}$
$\therefore m(\angle A)=180^{\circ}-65^{\circ}=115^{\circ}$

[3]

a) $\because \overrightarrow{\mathrm{AX}}$ is a tangent

$$
\begin{equation*}
\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle \mathrm{C}) \tag{1}
\end{equation*}
$$

(Subtended by the samearc)
$\because \overline{\mathbf{E D}} / / \overline{\mathbf{C B}}, \overline{\mathbf{A C}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathrm{E})=\mathrm{m}(\angle \mathrm{C})$ (2)
(Corresponding angles)
From (1) and (2)

$$
\therefore \mathrm{m}(\angle \mathbf{1})=\mathrm{m}(\angle \mathbf{E})
$$

$\therefore \overrightarrow{\mathbf{A X}}$ is a tangent to the circumcircle of Δ ADE
b) $\because \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathrm{D})=180^{\circ}-70^{\circ}=110^{\circ}$
In Δ ACD
$\because \mathbf{D A}=\mathbf{D C}$
$\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle 2)$
$=\frac{180^{\circ}-110^{\circ}}{2}=35^{\circ}$

[4]

a) $\because \overleftrightarrow{\mathbf{A X}}$ is a tangent
$\therefore \mathrm{m}(\angle \mathbf{1})=\mathrm{m}(\angle 2)=40^{\circ}$
(Subtended by the same arc)
In $\triangle \mathrm{ABC}$

$$
\begin{gathered}
\mathrm{m}(\angle 3)=180^{\circ}-\left(110^{\circ}+40^{\circ}\right)=30^{\circ} \\
\mathrm{m}(\angle 4)=\mathrm{m}(\angle 3)=30^{\circ}
\end{gathered}
$$

(Subtended by the same arc)
b) $\because \overrightarrow{\mathbf{A C}}, \overrightarrow{\mathrm{AB}}$ are two tangentsto the circle M
$\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle 2)=\mathrm{m}(\angle \mathrm{D})=80^{\circ}$
(Subtended by the samearc)
$\left.\therefore \mathrm{m}(\angle \mathrm{A})=\mathbf{1 8 0} 0^{\circ}-\mathbf{(8 0 ^ { \circ }}+\mathbf{8 0} 0^{\circ}\right)=\mathbf{2 0}$

[5]

a) $\because \overline{\mathbf{C D}} / / \overline{\mathbf{X Y}}, \overline{\mathrm{AC}}$ is a transversal
$\therefore \mathrm{m}(\angle \mathbf{1})=\mathrm{m}(\angle \mathbf{2})$
(coressponding angles)
$\because m(\angle 1)=m(\angle 3)$
(Subtended by the same arc)
From (I) and (II)
$\therefore \mathrm{m}(\angle 2)=\mathrm{m}(\angle 3)$
(Drawn on $\overline{\mathbf{A Y}}$ and in on one side of it)
\therefore ABXY is a cyclic quadrilate ral
b) $\because \overline{\mathrm{BC}}$ is a diameter

$$
\therefore \mathbf{m}(\angle \mathbf{A})=\mathbf{9 0}^{\circ}
$$

In ABDE

$$
\mathbf{m}(\angle A)+\mathbf{m}(\angle D)=90^{\circ}+90^{\circ}=180^{\circ}
$$

\therefore ABDE is a cyclic quadrilateral
$\Delta \Delta \mathrm{ABC}, \mathrm{DEC}$
$m(\angle \mathrm{EDC})=\mathbf{m}(\angle \mathrm{CAB})=90^{\circ}$
$\angle \mathrm{C}$ is a common angle,

$$
\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{CED})=\frac{1}{2} \mathrm{~m}(\mathrm{AC})
$$

[1] Complete:

1) Inscribed

2) Bisectors of the interior angles of a triangle
3) 180°
4) $5 x-8=3 x+20$
$\therefore 5 \mathrm{x}-3 \mathrm{x}=20+8 \quad \therefore 2 \mathrm{x}=28$
$\therefore \frac{2 \mathrm{x}}{2}=\frac{28}{2} \quad \therefore \mathrm{x}=14$
5) Equal in measure
6) $6+6+6+6+6=30 \mathrm{~cm}$

[2] Choose:

1) $\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{D})=\frac{360^{\circ}-140^{\circ}}{2}=\frac{220^{\circ}}{2}=110^{\circ}$
2) $2: 1$
3) $\mathrm{BC}=\frac{1}{2} \times \mathrm{AB}=\frac{1}{2} \times 8=4 \mathrm{~cm}$
4) 60°
5) 4
6) $2 \mathrm{x}=180^{\circ}-58^{\circ}=122^{\circ}$

$$
x=122^{\circ} \div 2=61^{\circ}
$$

[3]

a) Left
b) $\mathrm{m}(\angle \mathrm{A})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{BMC})=\frac{1}{2} \times 100^{\circ}=50^{\circ}$
$\because \angle \mathrm{ABD}$ is exteriorof $\triangle \mathrm{ABC}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathbf{m}(\angle \mathbf{A})+\mathrm{m}(\angle \mathrm{ACB})$
$\therefore \mathrm{m}(\angle \mathrm{ACB})=\mathbf{1 2 0}-\mathbf{5 0}^{\circ}=70^{\circ}$

[4]

\because YEDZ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle \mathbf{1})=\mathbf{1 8 0} 0^{\circ} \mathbf{1 3 0}=\mathbf{5 0}{ }^{\circ}$
$\because \overrightarrow{\mathbf{X Y}}, \overrightarrow{\mathbf{X Z}}$ are two tangentsto the circle
$\therefore \mathrm{m}(\angle 2)=\mathrm{m}(\angle 3)=\frac{\mathbf{1 8 0}^{\circ}-\mathbf{8 0}}{2}=\mathbf{5 0}^{\circ}$
$\therefore \mathrm{m}(\angle \mathbf{4})=\mathrm{m}(\angle \mathbf{2})=\mathbf{5 0}^{\circ}$
(Subtended by the same arc)
$\therefore \mathrm{m}(\angle 4)=\mathrm{m}(\angle 1)=50^{\circ}$
$\therefore \mathbf{Z E}=\mathbf{Z Y}$
$\because \mathrm{m}(\angle 1)=\mathrm{m}(\angle 2)=50^{\circ}$ and they are alternateangles
$\therefore \overline{\mathbf{X Z}} / / \overline{\mathbf{Y E}}$

[5]

\because EF is tangent to small circle
$\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle 2)$
(Subtended by the same arc)
$\because \angle 2$ is exteriorof the cyclic quadrilate ral BCED
$\therefore \mathrm{m}(\angle 2)=\mathrm{m}(\angle \mathbf{3})$
From (I) and (II)
$\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle 3)$
and the y are alternateangles
$\therefore \overleftrightarrow{\mathbf{A F}} / / \overline{\mathrm{DE}}$

[49] In the opposite figure:

The chords $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BE}}$ intersects At X, M is the centre of the Circle , $\mathrm{D} \in \quad$ draw $\overline{\mathrm{MB}}$ $\overline{\mathrm{MC}}$ and $\overline{\mathrm{AB}}$ if $\mathbf{m}(\angle \mathrm{BAC})=40^{\circ}$ Find:

1) $\mathrm{m}(\angle \mathrm{BEC})$
2) $\mathrm{m}(\angle$ BMC $)$
3) $\mathrm{m}($ BDC $)$

D

Proof:

1) $m(\angle E)=m(\angle A)=40^{\circ}$
(Subtended by the same arc)
$\mathrm{m}(\angle \mathrm{BMC})=\mathbf{2 m}(\angle \mathrm{E})=\mathbf{2 \times 4 0 ^ { \circ }}=\mathbf{8 0}{ }^{\circ}$
(Subtended by the same arc)
$\mathbf{m}(\angle \mathbf{D})+\mathbf{m}(\angle \mathbf{A})=180^{\circ}$
$\mathrm{m}(\angle \mathrm{D})=\mathbf{1 8 0 ^ { \circ }}-\mathbf{4 0}=\mathbf{1 4 0}{ }^{\circ}$
[51] In the opposite figure:
If $\overrightarrow{\mathrm{AD}}$ is a tangent to the circle At A, $\mathbf{m}(\angle D A B)=140^{\circ}$
Find: m($\angle \mathrm{C})$
Proof:

$$
\begin{aligned}
& \mathrm{m}(\angle 1)=\mathbf{1 8 0 ^ { \circ } - 1 4 0 ^ { \circ } = 4 0 ^ { \circ }} \\
& \mathrm{m}(\angle 1)=\mathrm{m}(\angle \mathrm{C})=\mathbf{4 0 ^ { \circ }}
\end{aligned}
$$

(Subtended by the samearc)

[64]In the opposite figure

CD Is a chord of the circle M, X is the midpoint of $\overline{\mathbf{C D}}$ and $\mathrm{E} \in \overline{\mathbf{C X}}$
Prove that

1) EFBX is a cyclic quadrilateral
2) $\mathbf{m}(\angle \mathrm{AEX})=\mathrm{m}(\angle \mathrm{ADF})$

Proof:
$\because \overline{\mathrm{AB}}$ is a diameter

$\therefore \mathrm{m}(\angle \mathbf{2})=\mathbf{9 0}{ }^{\circ}$
$\because \mathbf{D X}=\mathbf{X C}$
$\therefore \mathrm{m}(\angle 1)=90^{\circ}$
$\because m(\angle 1)=m(\angle 2)=90^{\circ}$
\therefore XEFB is a cyclic quadrilateral
$\therefore m(\angle 3)=m(\angle 4)$
(Exterior of the cyclic XEFB)
$\because m(\angle 5)=m(\angle 4)$
(Subtended by the same arc)
From (I) and (II)
$\therefore m(\angle 3)=m(\angle 5)$
[68] $\overline{\mathrm{AB}}, \overline{\mathrm{CD}}$ Are chords in A circle $\mathrm{M}, \mathrm{AB}=\mathbf{C D}$ $\overline{\mathbf{A D}} \cap \overline{\mathbf{B C}}=\{\mathbf{H}\}$,

Prove that:

1) $\mathbf{m}(\angle \mathbf{C A D})=\mathbf{m}(\angle \mathrm{BDA})$
2) AHMB is a cyclic quad.

Proof:
$\because \overline{\mathbf{A D}} \cap \overline{\mathbf{B C}}=\{\mathbf{H}\}$
$\therefore \mathrm{m}(\angle 2)=\frac{\mathrm{m}(\mathrm{AB})+\mathrm{M}(\mathrm{CD})}{2}$
$\because \mathbf{m}(A B)=\mathbf{m}(C D)$
$\therefore m(\angle 2)=m(A B)$
$m(\angle \mathbf{1})=\mathbf{m}(\mathrm{AB})$
From (I) and (II)
$\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle 2)$
(Drawn on $\overline{\mathrm{AB}}$ and in one side of it)
\therefore AHMB is a cyclic quadrilateral
$m(\angle 3)=m(\angle 4)=\frac{1}{2} m(A B)=\frac{1}{2} m(C D)$

8が)

[1] Complete:

1) If the quadrilateral is a cyclic then every two opposite angles are
2) Measure of the angle of tangency is equal to the measure of the subtended by the same arc.
3) The are af a square whose diagonal length is
$4 \sqrt{2} \mathrm{~cm}=\ldots \ldots \ldots . . \mathrm{cm}^{2}$

Figure (1)

Figure (2)

Figure (3)
4) In figure (1) circle $M, m(\angle B M C)=140^{\circ}$ thenm $(\angle \mathrm{BAC})=$
5) In figure (2), $\overrightarrow{\mathbf{A B}}, \overrightarrow{\mathbf{A C}}$ are two tangentsof the circle M $B M=6 \mathrm{~cm}, A M=10 \mathrm{~cm}$, then $A C=\ldots \ldots . . \mathrm{cm}$
6) Infigure (3), $\mathrm{m}(\angle \mathrm{DEB})=100^{\circ}, \mathrm{m}(\angle \mathrm{C})=60^{\circ}$ thenm $(\angle \mathrm{ADC})=\ldots$.

[2] Choose:

1) The two tangents drawn at the ends of a diameter of a circle are
(parallel , equal , intersecting , perpendicular)
2) measure of the inscribed angle drawn on $\frac{1}{3}$ of
a circle equals

Figure (1)

Figure (3)

Figure (2)

Figure (4)
3) In figure (1) $\mathrm{m}(X Z)=70^{\circ}, \mathrm{m}(Y N)=30^{\circ}$
thenm $(\angle E)=\ldots . . . \quad(20,40,50,100)$
4) In figure (2) $\overrightarrow{A D}$ is a tangent to the circle M at A

$$
\begin{array}{r}
\mathrm{m}(\angle \mathrm{CAD})=30^{\circ} \text { thenm }(\angle \mathrm{C})=\ldots \ldots . . \\
(90,60,120, \mathbf{3 0})
\end{array}
$$

5) In figure (3) $\overleftrightarrow{A B}$ is a tangent to the circle at A,
$\overleftrightarrow{\mathrm{AB}} / / \overline{\mathrm{CD}}, \mathrm{m}(\mathrm{AC})=90^{\circ}$ thenm $(\angle \mathrm{C})=$
$(\mathbf{5 0 , 4 5}, \mathbf{1 0 0}, \mathbf{3 0})$
6) In figure (4) $\overrightarrow{B A}$ is a tangent to the circle M

$$
\begin{array}{r}
, \mathrm{CA}=\mathrm{MA}, \mathrm{~m}(\angle \mathrm{~B})=\ldots \ldots . . . \\
\quad(\mathbf{7 0}, \mathbf{6 0}, \mathbf{3 0}, \mathbf{2 0})
\end{array}
$$

[70] ABC is an acute-angled triangle. The squares ABDE and BCYX Are drawn outside $\triangle \mathrm{ABC}$ if $\overline{\mathrm{AX}}$ And $\overline{\mathrm{CD}}$ are intersecting at F
Prove that:

1) ADBF is a cyclic Quadrilateral.
2) $\overline{\mathbf{A X}} \perp \overline{\mathbf{C D}}$
3) $\overrightarrow{\mathrm{FB}}$ bi sects $\angle \mathbf{X F D}$

[72] ABCD is a square., X, Y And Z are the midpoints of $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{AD}}$ Respectively. If $\overline{\mathbf{A Y}}$, and $\overline{\mathbf{D X}}$ intersect at \mathbf{E}, Prove that:
The figure EYDZ is A cyclic quadrilateral.

[74]

1) Prove that:

$\mathrm{AC} \times \mathrm{AD}=$ constant
2) Find the length of $\overline{\mathbf{A B}}$

[75]
$\overline{\mathrm{AB}}$ is a tangent then find the length of $\overline{\mathbf{C D}}$
[76]
Find the length of $\overline{E D}$

[*77] Complete:

1) If one of a line segment lies on the center of the circle and the other end on the circle, then this line segment is called
2) If the two ends of a line segment lie on the circle, then this line segment is called
3) The chord which passes through the center of the circle is called
4) The longest chord of the circle is called
5) The circle has number of axes of symmetry.
6) In any circle the perpendicular straight line on any chord from its midpoint is to the circle.
7) The circle divides the plane into sets of points.
8) The perpendicular straight line on the diameter from one end is
9) The two tangents to a circle at the two end points of the diameter are
10) The equal chords in length of a circle are equidistant from
11) The chords of a circle are equidistant from its centre are
12) If the point A lies outside the circle M of radius length is r, then MA r
13) The line of centre of two intersecting circle
is
14) If the surface of the circle $M \cap$
the surface of the circle $N=\varnothing$, then the two circles M and N are
15) If the surface of the circle M
\cap the surface of the circle $N=\{A\}$ then the two circles M and N are
16) The number of circles can be drawn passing through
two given points in the plane equals
17) If two circles have three common points, then they are
18) The radius length of the smallest circle drawn to passing through two given points in the plane equals
19) The point of intersection of the symmetric axes of the sides of a triangle is
20) If M is a circle of radius length is r, A is
a point in the plane of the circle :
21) If $M A=\frac{1}{2} r$, then $A \ldots$. the circle
22) If $M A=r$, then A.......... the circle
23) If $\mathrm{MA}=\mathbf{3} \mathbf{r}$, then A the circle
[*78] Match from the column (X) to the column (Y) to get a true statement two circles M, N of radii lengths are 8 cm . and 6 cm . :

X	Y
1) If $: M N=1 \mathrm{~cm}$.	a) \mathbf{M}, \mathbf{N} are two intersecting circles
2) If $: M N=2 \mathrm{~cm}$.	b) \mathbf{M}, \mathbf{N} are two distant circles.
3) If $: M N=7 \mathrm{~cm}$.	c) \mathbf{M}, \mathbf{N} touching externally.
4) If $: M N=14 \mathrm{~cm}$.	d) M, N are interior circles.
5) If $: M N=15 \mathrm{~cm}$.	e) M, N touching internally.

[*79] Choose the correct answer from those given:

1) If the length of a diameter of a circle is 7 cm . and the straight line L at distance 3.5 cm . from its centre, then L is
a) Secant to the circle at two points.
b) Outside the circle
c) Tangent to the circle
d) Axis of symmetry to the circle.
2) If the point A belongs to the circle M of diameter length 6 cm . , then MA equals
a) 3 cm
b) 4 cm
c) 5 cm
d) 6 cm
3) If the straight line L is a tangent to the circle M of diameter length 8 cm ., then the distance between L and its centre equals
a) 3 cm
b) 4 cm
c) 6 cm
d) 8 cm
4) If the straight line L is outside a circle of radius length $\mathbf{3} \mathbf{~ c m}$. and its centre M, if
L at distance x from its centre, then $x \in$
a) $] 3, \infty[$
b) $[3, \infty[$
c) $[6, \infty[$
d) $]-\infty,-6]$
5) If the straight line L at distance x from the centre of the circle M whose radius length $r, x \in] 0, r[$, then L
a) intersects the circle
b) touches the circle
c) lies outside the circle
d) passes through the centre of the circle
6) If the length of the perpendicular drawn from the centre of the circle on the straight line L equals 6 cm . and the radius length of this circle $=6 \mathrm{~cm}$. , then L length $r, x \in] 0, r[$, then L
a) intersects the circle
b) touches the circle
c) lies outside the circle
d) passes through the centre of the circle
7) Which of the following points does not belong to the circle that its center is the origin and its radius length $7 \mathrm{~cm} . ?$
a) $(0,7)$
b) $(0,-7)$
c) $(7,0)$
d) $(7,7)$
8) The number of the circles can be drawn to pass through the end points of the line segment $\overline{\mathrm{AB}}$ equals
a) 1
b) 2
c) 3
d) an infinite number
9) If the circle $M \cap$ the circle $N=\{A, B\}$, then the two circles M and N are
a) distant.
b) concentric.
c) touching externally.
d) intersecting.
10) If the two circles M, N are touching externally, the radius length of one of them 5 cm . and $\mathrm{MN}=9 \mathrm{~cm}$., then the radius length of the other circle $=\ldots \ldots . . \mathrm{cm}$.
a) 3
b) 4
c) 7
d) 14
11) If the two circles M, N are touching internally, the radius length of one of them 3 cm . and $\mathrm{MN}=8 \mathrm{~cm}$., then the radius length of the other circle $=\ldots \ldots . . \mathrm{cm}$.
a) 5
b) 6
c) 11
d) 12
12) M and N are two intersecting circles their radii lengths are $5 \mathrm{~cm}, 2 \mathrm{~cm}$, then $\mathrm{MN} \in \ldots .$.
a) $] 3,7[$
b) $[3,7[$
c) $] 3,7]$
d) $[3,7]$
13) The number of the circles that passes through three collinear points equals \qquad
a) zero
b) one
c) three
d) an infinite number
14) The symmetric axis of the common chord $\overline{\mathrm{AB}}$ to the two intersecting circles M, N is
a) $\overleftrightarrow{M A}$
b) $\overleftrightarrow{\mathbf{M B}}$
c) $\overleftrightarrow{\mathbf{M N}}$
d) $\overleftrightarrow{\mathbf{N A}}$
15) The number of the circles which passes through three non collinear points equals
a) 0
b) 1
c) 2
d) 3
16) The center of the circumcircle of any triangle is the point of intersection of its
a) Interior bisectors of its angles.
b) Exterior bisectors of its angles.
c) Its heights.
d) Symmetric axes of its sides.
17) If the two points A, B lie on a plane, $A B=4 \mathrm{~cm}$., then the length of the radius of the smallest circle passes through A and B equals
a) 2 cm .
b) 3 cm .
c) 4 cm .
d) 8 cm .
18) If the two points A, B lie on a plane, $A B=6 \mathrm{~cm}$., then the number of circle each of them has a radius length 5 cm . and passes through A and B equals
a) 0
b) 1
c) 2
d) an infinite number

[*80] Complete:

1) The chords which opposite to equal arcs in measure in any circle are
2) The measure of the inscribed angle equals half the measure of
3) The quadrilateral is said to be a cyclic quadrilateral if the measure of an exterior angle at any vertex equals the of the angle which opposite to its adjacent.
4) The two parallel chords in a circle intercept two arcs
5) The measure of an arc of a circle equals double
6) The two inscribed angles subtended on the same arc in a circle are
7) The altitude of any triangle are
8) The measure of the angle of tangency equals the central angle on its common arc.
9) The number of all common tangents drawn to two distant circles equals
10) The center of the inscribed circle of any triangle id the point of intersection of
11) In the opposite figure:

In a circle $M, m(\angle A)=48^{\circ}$, then :
a) $\mathrm{m}(\angle \mathrm{C})=$.
b) $\mathbf{m}(B D)=$........,
" BD is the major arc "

12) In the opposite figure:

In a circle $M, m(\angle C A E)=63^{\circ}$, then :
a) $m(\angle E B C)=$
b) $m(\angle E M C)=$
c) $\mathbf{m}(\angle \mathrm{EDC})=$.

D
13) In the opposite figure:

In a circle $M, \overline{A B}$ is
a diameter,$\overleftrightarrow{\mathbf{C D}}$ is a tangent at D , $m(\angle \mathrm{BAD})=28^{\circ}$, then :
a) $\mathbf{m}(\angle \mathrm{BDM})=\ldots^{\circ}$
b) $\mathbf{m}(\angle \mathrm{BMD})=\ldots^{\circ}$
c) $\mathbf{m}(\angle \mathrm{BDC})=.^{\circ}$
d) $\mathbf{m}(\angle \mathrm{BDC})=$.

14) In the opposite figure:
$m(\angle A)=65^{\circ}$
then $m(\angle B)=$. \qquad

15) In the opposite figure:
$\overline{\mathrm{AB}}$ is a diameter, $m(A C)=m(C D)$ $=\mathbf{m}(\mathrm{DB})$ then :
a) $\mathrm{m}(\angle \mathrm{DMC})=\ldots . . .^{\circ}$
b) $\mathrm{m}(\angle \mathrm{DEC})=\ldots^{\circ}$

[*81] Choose the correct answer from those given:

1) The two opposite angles in the cyclic quadrilateral
are
a) equal
b) complementary
c) Supplementary
d) alternate
2) The inscribed angle which opposite to the minor arc in a circle is
a) reflex
b) right
c) Obtuse
d) acute
3) The two tangents drawn from a point outside a circle are
a) equal in length
b) parallel
c) Not equal in length
d) orthogonal
4) The angle of tangency included between
a) two chords
b) two tangents
c) chord and tangent
d) chord and diameter
5) The number of tangents can be drawn from a point lies on a circle equals
a) 1
b) 2
c) 4
d) an infinite number
6) The number of common tangents can be drawn to two concentric circles equals
a) 0
b) 1
c) 2
d) 3
7) The number of common tangents can be drawn to touching internally circles equals
a) 1
b) 2
c) 3
d) 4
8) It is possible to draw a circle passing through the vertices of a
a) trapezium
b) rhombus
c) parallelogram
d) rectangle
9) In the opposite figure :

In a circle $M, \mathbf{m}(\angle A M B)=52^{\circ}$ then : $m(\mathrm{ADB})=$
a) 52
b) 104
c) 128
d) 308

10) In the opposite figure:
$\overline{\mathrm{AC}}, \overline{\mathrm{BD}}$ are two iintersecting chords in a circle M, if $m(\angle A)=35^{\circ}$ and $m(\angle A E D)=115^{\circ}$, then $m(A D)=.^{\circ}$
a) 70
b) 80
c) 115
d) 160
11) In the opposite figure:
$\overline{\mathrm{AB}}$ is a diameter in a circle M , $m(\angle A B C)=40^{\circ}$, then $m(B C)=$
a) 40
b) 50
c) 90
d) 100
12) In the opposite figure:
$\overline{\mathrm{AB}}$ is a diameter in a circle M , $\mathrm{m}(\angle \mathrm{ABD})=25^{\circ}$, then :
First) $\mathbf{m}(\angle \mathrm{DAB})=$
a) 25
b) 50
c) 65
d) 90

Second) $m(\angle D C B)=$
a) 50
b) 100
c) 115
d) 125

13) In the opposite figure:

Two concentric circles at M
, $\overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{M\}$ if $\mathrm{m}(\mathrm{BD})=80^{\circ}$ then $m(A C)=.^{\circ}$
a) 40
b) 80
c) $\mathbf{1 0 0}$
d) 160

14) In the opposite figure:
$\overrightarrow{\mathbf{A B}}, \overrightarrow{\mathbf{A C}}$ are two tangents ,$m(\angle A)=60^{\circ}$, if $A B=4 \mathrm{~cm}$. then the length of
$\overline{\mathrm{CB}}=\ldots . . . \mathrm{cm}$
a) 3
b) 4
c) 5
d) 8
15) In the opposite figure:

If $\overleftrightarrow{\mathbf{B D}}$ is a tangent to the circle M $\mathbf{m}(\angle$ BAM $)=25^{\circ}$, then $\mathrm{m}(\angle \mathrm{ABD})=.^{\circ}$
a) 25
b) 50
c) 65
d) $\mathbf{1 3 0}$
16) In the opposite figure:

If $m(X Z)=70^{\circ}$
, $\mathrm{m}(\mathrm{YN})=30^{\circ}$ then $m(\angle E)=\ldots^{\circ}$
a) $\mathbf{2 0} \quad$ b) $\mathbf{4 0} \quad$ c) $\mathbf{5 0} \quad$ d) $\mathbf{1 0 0}$
17) In the opposite figure:

BAMC is a rectangle
, $\mathrm{ME}=4 \mathrm{~cm}, \mathrm{CD}=1 \mathrm{~cm}$
, then $\mathrm{MC}=. \mathrm{cm}$.
a) 3
b) 4
c) 5
d) 7

[*82] Choose the following figures choose the correct

 answer:

Figure (1)

Figure (2)

Figure (3)

Figure. (1):
A circle of centre $M, m(\angle M B C)=32^{\circ}$
, then $\mathbf{m}(\mathbf{B C})=\ldots{ }^{\circ}$
a) 16
b) 32
c) 64
d) 116

Figure. (2):
$\overline{\mathrm{AB}}, \overline{\mathbf{C D}}$ are two intersecting chords in a circle, then $m(\angle D A B)=\ldots^{\circ}$
a) 40
b) 50
c) 60
d) 70

Figure. (3) :

$\overline{\mathrm{AB}}$ is a diameter in a circle, $\mathrm{m}(\mathrm{AC})=\mathrm{m}(\mathrm{CD})$
$=m(D E)=m(E F)=m(F B)$, then $m(\angle D X E)=\ldots \ldots$.
a) 18
b) 36
c) 54
d) 72
[*83] Using the following figures choose the correct answer:

Figure (1)

Figure (3)

Figure (2)

Figure (4)

Figure. (1) :

A circle of centre $M, m(\angle A M C)=140^{\circ}$
then $\mathbf{m}(\angle A D C)=\ldots^{\circ}$
a) 40
b) 70
c) 110
d) 140

Figure. (2):
If $m(\angle A B M)=140^{\circ}$, then $m(\angle A C B)=\ldots . . .^{\circ}$
a) 80
b) 100
c) 130
d) 140

Figure. (3) :

If $\mathrm{m}(\angle \mathrm{ABC})=70^{\circ}$, then $\mathrm{m}(\angle \mathrm{BDC})=\ldots \ldots . .^{\circ}$
a) 20
b) 40
c) 60
d) 90

Figure. (4):
If $m(\angle B A D)=120^{\circ}$, then $m(\angle C B D)=\ldots . . \circ^{\circ}$
a) 15
b) 30
c) 45
d) 60
[*84] In the opposite figure: $\mathrm{m}(\angle \mathrm{C})=70^{\circ}$, the length
of $\mathrm{CD}=$ the length of BC
$\overrightarrow{\mathbf{M N}} \cap \overline{\mathbf{C D}}=\{\mathbf{F}\}$ and
$\overrightarrow{\mathrm{DA}} \cap$ the circle $M=\{A, E\}$
Find : m($\angle \mathrm{BDC}$)
,$m(\angle B A D)$ and $m(\angle B M E)$

[*85] In the opposite figure: A semicircle of centre $\mathbf{M}, \overline{\mathbf{A D}} / / \overline{\mathbf{B C}}$ Prove that : ABCE is a parallelogram.

[*86] In the opposite figure:

\mathbf{M}, \mathbf{N} are two congruent circles, $\overline{\mathbf{A C}}$ is
a tangent to the circle M at $A, \overline{\mathrm{DF}}$ is
a tangent to the circle \mathbf{N} at $\mathrm{D}, \overline{\mathrm{AC}} / / \overline{\mathrm{DF}}$
prove that:1) $\mathrm{BC}=\mathrm{EF} \quad$ 2) $\mathrm{AB}=\mathrm{ED}$

[*86] In the opposite figure:
\mathbf{M}, \mathbf{N} are two intersecting circles, $\overline{\mathbf{C D}}$ is
a chord in the circle \mathbf{M}, cuts $\overleftrightarrow{\mathbf{M N}}$ at E ,
if E is the midpoint of $C D$
Prove that: $\overline{\mathbf{A B}} / / \overline{\mathbf{C D}}$

